# **Environmental Monitoring for the Navi Mumbai International Airport Proposed**

by

City & Industrial Development Corporation of Maharashtra Ltd.



## **ENVIRONMENTAL COMPLIANCE MONITORING REPORT**

**FOR** 

(August to December 2015)

**PREPARED BY** 



ADITYA ENVIRONMENTAL SERVICES PVT.LTD.

10, Hiren Light Industrial Estate, Mogul Lane,
Mahim (W), Mumbai – 400 016

www.aespl.co.in

## **INDEX**

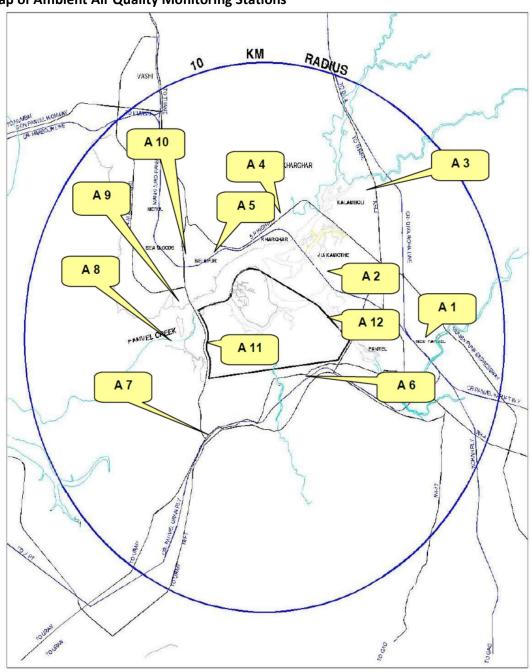
| Details of Activities                                                       | Page<br>No. |
|-----------------------------------------------------------------------------|-------------|
| Introduction                                                                | 3           |
| Scope of the Work                                                           | 9           |
| Methodology Adopted                                                         | 10          |
| Compilation of Data & Inference                                             | 11          |
| Conclusion & recommendation                                                 | 26          |
| List of Tables                                                              |             |
| Table no. 1: Ambient air quality Analytical Report.                         | 11          |
| Table no. 2: Ambient noise level Analytical Report.                         | 12          |
| Table no. 3: Soil Analytical Report                                         | 13          |
| Table no. 4: Ground water Analytical Report.                                | 14          |
| Table no. 6: Physicochemical Analysis Report of Marine water                | 16          |
| Table no. 5: Biological analysis Report of Marine water.                    | 19          |
| List of Figures                                                             |             |
| AAQM sampling location                                                      | 4           |
| Marine Water & Sediment Sampling Location                                   | 5           |
| Soil sampling locations                                                     | 7           |
| Noise level monitoring locations                                            | 8           |
| Graphical representation of phytoplankton population and total genera       | 24          |
| Graphical representation of Zooplankton Biomass, population and total group | 25          |
| Graphical representation of population of benthic organisms                 | 26          |

#### Section | : Introduction

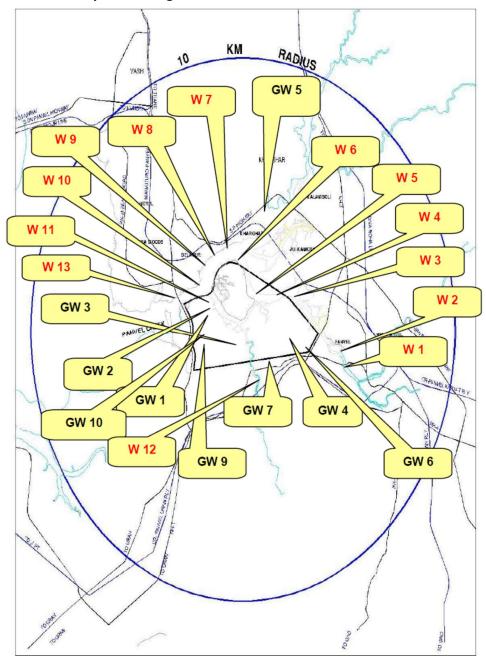
Mumbai metropolitan Region (MMR) is industrial and technological advanced region, which experience growth in income and employment. The increasing trend in trading, business and financial services, demands a highest order of infrastructure. This needs immediate attention to enhance the capacity of airport as the existing airport in Mumbai experiencing tremendous pressure for meeting the traffic demands. Realizing the need of second airport for Mumbai the civil Aviation granted approval & Govt. of Maharashtra also granted approval and appointed City & industrial Development Corporation of Maharashtra Limited (CIDCO) as Nodal agency for implementation.

The proposed area is situated in Panvel taluka of Raigad district of Maharashtra state with latitude of 18° 59′ 00.33″ N and longitude of 73° 04′ 18.00″ E.

CIDCO appointed Aditya Environmental Services Pvt. Ltd. (AESPL) to conduct Compliance Environmental Monitoring for the New Mumbai International Airport (NMIA). Refer to Tender No. CIDCO / T&C / NIMA / EC-22-11-2010/7.I.vii/xiii/xxxx/010/251 dated. 16.02.2012, Ambient air monitoring, Ambient noise level monitoring, Soil, ground/surface water, marine water and sediments for biological and physicochemical parameters considered for study by AESPL in the surrounding region of project area.


After receiving confirmation from Proponent, reconnaissance visit with CIDCO officials were conducted, after that Environmental Monitoring activities at given locations were started from August 2015. Accordingly, report is prepared for period of August 2015 to December 2015.

#### **Ambient Air Quality Monitoring Stations**


| Sr.<br>No. | Station<br>Code | Station                     | Remarks                                                        |
|------------|-----------------|-----------------------------|----------------------------------------------------------------|
| 1.         | PCO             | Panvel CIDCO Office         | Location of meteorological station and in residential zone     |
| 2.         | KRS             | Khandeshwar Railway Station | Commercial activity center                                     |
| 3.         | ксо             | Kalamboli CIDCO Office      | Receptor oriented as it is in residential zone                 |
| 4.         | KNO             | Kharghar Nodal Office       | Receptor oriented as it is in residential zone                 |
| 5.         | ВСВ             | Belapur CIDCO Bhavan        | Major commercial activity center, heavy traffic movement       |
| 6.         | PHS             | Pargaon High School         | Rural and mixed area                                           |
| 7.         | GWT             | Gavanphata Water Tank       | Near to main traffic junction and hence heavy traffic movement |

| Sr.<br>No. | Station<br>Code | Station                   | Remarks                                                                       |
|------------|-----------------|---------------------------|-------------------------------------------------------------------------------|
| 8.         | ACL             | Ambuja Cement Ltd         | Industrial activity center                                                    |
| 9.         | KGH             | Kille Gaothan Guest House | Receptor oriented as it is in residential zone                                |
| 10.        | PGH             | Panchsheel Guest House    | Receptor oriented as it is in residential zone                                |
| 11.        | To be<br>named  | Airport Entry – West      | High vehicular movement at the entry / exit at the west side, near Aamra Marg |
| 12.        | To be<br>named  | Airport Entry – East      | High vehicular movement at the entry / exit at the east side, near NH4B       |

**Map of Ambient Air Quality Monitoring Stations** 



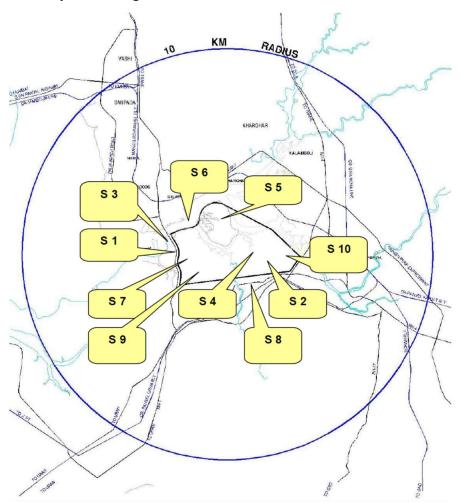
# **Map of Water Quality Monitoring Stations**



# **Marine Water Quality Monitoring Stations**

| Sr. No. | Station Code | Location                                               |
|---------|--------------|--------------------------------------------------------|
| 1.      | W1           | Extreme end of Gadhi River (upstream side)             |
| 2.      | W2           | Near Pargaon village (200m from W1) in Gadhi River     |
| 3.      | W3           | Near Jui Village (300m from W2) in Gadhi River         |
| 4.      | W4           | Near Koppar Khadi (300m from W3) in Gadhi River        |
| 5.      | W5           | Near Vaghivali village (500m from W4) in Gadhi River   |
| 6.      | W6           | Vaghivali creek junction (300m from W5) in Gadhi River |

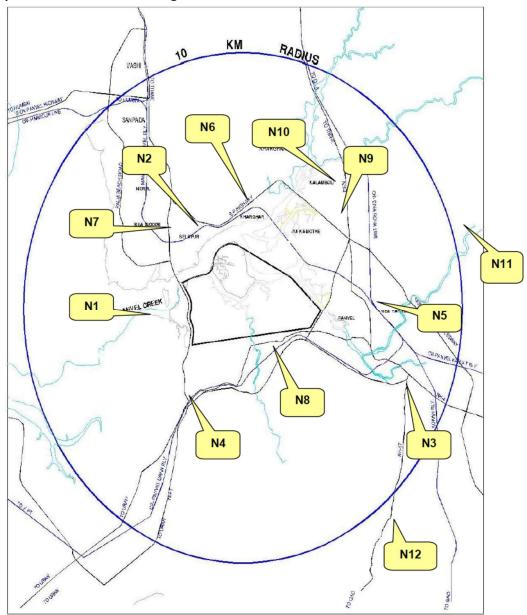
| Sr. No. | Station Code | Location                                             |
|---------|--------------|------------------------------------------------------|
| 7.      | W7           | Near Kharghar Rly Station (300m) in Gadhi River      |
| 8.      | W8           | Near Belpada (300m from W7) in Gadhi River           |
| 9.      | W9           | Near Konkan Bhavan (300m from W8) in Gadhi River     |
| 10.     | W10          | Near Divala village (300m from W10) in Gadhi River   |
| 11.     | W11          | At Junction of Ulwe and Gadhi Rivers in Panvel Creek |
| 12.     | W12          | In Ulwe River                                        |
| 13.     | W13          | Near Rathi bander in Panvel Creek                    |


# **Ground Water Quality Monitoring Stations**

| Sr. No. | Station Code | Location                       |
|---------|--------------|--------------------------------|
| 1.      | GW1          | Open well at Kombadbhuje       |
| 2.      | GW2          | A well near pond at Ganeshpuri |
| 3.      | GW3          | Open well at Vaghivlivada      |
| 4.      | GW4          | Open well at Koli              |
| 5.      | GW5          | Open well at Kopar             |
| 6.      | GW6          | Open well at Chinchpada        |
| 7.      | GW7          | A well near pond at Pargaon    |
| 8.      | GW8          | A well near pond at Vaghivali  |
| 9.      | GW9          | Open well at Ulwe              |
| 10.     | GW10         | A well near pond at Targhar    |

# **Soil Quality Monitoring Stations**

| Sr. No. | Station Code | Location     |
|---------|--------------|--------------|
| 1.      | S1           | Targhar      |
| 2.      | S2           | Kopar        |
| 3.      | S3           | Kombadbhuje  |
| 4.      | S4           | Koli         |
| 5.      | S5           | Vaghivali    |
| 6.      | S6           | Ganeshpuri   |
| 7.      | S7           | Ulve         |
| 8.      | S8           | Pargaon      |
| 9.      | S9           | Vaghivlivada |
| 10.     | S10          | Chinchpada   |


# **Map of Soil Quality Monitoring Stations**



# **Noise Level Monitoring Stations**

| Sr. No. | Station Name              | Category of area                  |
|---------|---------------------------|-----------------------------------|
| N1      | Ambuja Cement Limited     | Industrial area                   |
| N2      | CIDCO Bhavan, CBD Belapur | Commercial area                   |
| N3      | Palaspa Junction          | Commercial area                   |
| N4      | Teen Tank Gavanphata      | Commercial area                   |
| N5      | Panvel CIDCO Office       | Residential Area (Mixed category) |
| N6      | Kharghar Nodal Office     | Residential Area                  |
| N7      | Panchsheel Guest House    | Residential Area                  |
| N8      | Pargaon School            | Sensitive area (Mixed category)   |
| N9      | MES School                | Sensitive area (Mixed category)   |
| N10     | MGM Hospital, Kalamboli   | Sensitive area (Mixed category)   |
| N11     | Swapna Nagri              | Residential Area (Mixed category) |
| N12     | Karnala Bird Sanctuary    | Sensitive area                    |

# **Map of Noise Level Monitoring Stations**



Section II : Scope Of Work As Per Tender

| Sr.<br>No. | Parameters – as per Annexure B                                                                                                                                                                                                                                                                                                                                                                             | Location                                                   | Frequency                                                                       | Samples /<br>Year |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|
| 1.         | Ambient Air Quality: PM 2.5, PM 10, SO <sub>2</sub> , NOX, CO, Lead, Ammonia, Hydrocarbon (nMHC).                                                                                                                                                                                                                                                                                                          | 12 .00                                                     | 2 Stations per<br>Month, @ one<br>sample per station                            | 24.00             |
| 2.         | Marine/Surface Water Quality: Physico Chemical parameters: PH, Floating materials, Turbidity, Temperature, Salinity (ppt, %0), TSS, TDS, TOC, DO, BOD, O&G, SO <sub>4</sub> , NO <sub>2</sub> , NO <sub>3</sub> , NH <sub>3</sub> -N, Inorganic PO <sub>4</sub> , Ca, Mg,Fe, Cr, Cu, As, Cd, Hg, Pb, Zn.                                                                                                   | 13.00                                                      | For 3 seasons  No. of samples 26 samples per season 26 x 3 =78 samples per year | 78.00             |
| 3.         | Marine/Surface Water Quality: Biological parameters: Seasonal sampling & testing (SPC) of: Phytoplankton, Zooplankton, Macrofauna, Meiofauna, Microbiology, Benthos, Diversity Indices & Coliform colonies (MPN)                                                                                                                                                                                           | <b>3.0</b> - 2 at Gadhi river entrances, & 1 at Ulwe river | For 3 seasons.  No. of Samples -  3x3 = <b>9</b> per year                       | 9.00              |
| 4.         | Ground Water Quality Parameters: pH, Temperature, Turbidity, Alkalinity, Salinity, Total Nitrogen, Total Phosphorous, DO, BOD, COD, O&G, Residual Chlorine, Total Hardness, Chloride, TDS, Na, Fluorides (as F), NO3, Mn, K, Fe, SO4, Phenol, Hexa Chromium, Cu, Cd, As, Hg, Pb, Zn, Fecal Coliform (MF count/ml), Coliform Colonies, Phytoplankton, Total Heterotrophic Bacteria (spc /mL) & Chlorophyll. | 10.00                                                      | 5 Location per<br>Month @ 1 Sample<br>per location = 5<br>samples per month     | 60.00             |
| 5.         | Soil: Parameters: pH, Texture class, Organic carbon, Electrical Conductivity, Available Nitrogen, Available Phosphorus, Available Potassium, Sulphate, Chloride, Calcium, Magnesium, Iron, Manganese, Copper, Mercury, Cadmium, Arsenic, Lead, Zinc, Aluminum, Nickel, Cobalt, Chromium, Sodium & Potassium.                                                                                               | 10.00                                                      | 1 Sample at each station per 6 monthly periods. 10 x 1 x2 =20 samples per year  | 20.00             |
| 6.         | Noise: Parameters: Leq Noise level - Day time & Night time separately.                                                                                                                                                                                                                                                                                                                                     | 12.00                                                      | Same as per Air<br>Quality                                                      | 24.00             |

### **Section III: Methodology**

Sampling, analytical methods adopted for Ambient Air, Noise, Water Analysis:

| Sr.<br>No. | Parameter                                    | Method of Sampling                                                | Method of<br>Analysis                  | Reference                      |  |  |  |  |
|------------|----------------------------------------------|-------------------------------------------------------------------|----------------------------------------|--------------------------------|--|--|--|--|
| 1.         | PM <sub>10</sub>                             | RSPM Sampler                                                      | Gravimetric analysis                   | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 2.         | PM <sub>2.5</sub>                            | PM <sub>2.5</sub> Sampler                                         | Gravimetric analysis                   | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 3.         | SO <sub>2</sub>                              | Absorption in TCM                                                 | West & Gaeke<br>Method                 | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 4.         | NO <sub>x</sub>                              | Absorption in NaOH                                                | Jacob – Hochheiser<br>(Sodium Arsenic) | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 5.         | со                                           | Sampling in Tedler bags /<br>CO Meter                             | GC with<br>Methaniser                  | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 6.         | Lead                                         | Sampling using EPM 2000 equivalent Filter paper                   | AAS Method                             | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 7.         | NH3                                          | Absorption in sulfuric acid                                       | Indophenol<br>Method                   | CPCB Guidelines<br>Manual 2011 |  |  |  |  |
| 8.         | nMHC                                         | Collection Activated<br>Carbon                                    | Gas<br>Chromatography                  | АРНА                           |  |  |  |  |
| 9.         | Noise level (Maxi, Mini.<br>& Av.) Leq dB(A) | Using Integrated Noise Level Meter EPA Method                     |                                        |                                |  |  |  |  |
| 10.        | Ground, Marine Water,<br>Soil Analysis       | Using APHA, BIS, ASTM & CPCB standards Methods for water Analysis |                                        |                                |  |  |  |  |

- Environmental sampling conducted by experienced, qualified environmental staff & Analysis and reporting by approved Govt. Analyst.
- Instrument used for sampling are from reputed manufacturer & are regularly calibrated.
- Chemicals used will be Analytical Reagent grade and from reputed manufacturer.
- Analytical Instrumentation used in the laboratory is regularly calibrated.
- We have regular program of Preventive Maintenance & Annual Maintenance Contracts for all critical equipment's.
- Our Environmental Laboratory is recognized by Ministry of Environment & Forest (MoEFCC),
   Govt. of India under Environment (Protection) Act, 1986.
- Standard Methods Adopted in the laboratory are those prescribed by APHA, BIS, ASTM & CPCB for water, waste & marine water analysis.
- Overall approach & methodology will be in tune with Annexure IA Scope of the work & the Best practices as per prevailing norms of CPCB/MoEF etc /Internationally adopted practices.

### Section IV & V: Compilation of Data & Inference

## **Ambient Air Quality Monitoring Report**

Ambient Air quality was monitored with relevant parameters as per NAAQS standards published by CPCB in November 2009 considering that the present project is for development of International Airport for Navi Mumbai area.

Table no. 1: Ambient air quality monitoring of various stations of project area during August to December 2015

| Sampling<br>Locations | Panvel<br>CIDCO<br>office | Kalmboli<br>CIDCO<br>Office | Kharghar<br>CIDCO<br>Office | CBD<br>CIDCO<br>Office | Near<br>Khandeshwar<br>Rly. Stn. | Kalmboli<br>CIDCO<br>Office | Ambuja<br>Cement<br>Ltd. | Pansil<br>G.H.,<br>Nerul | Gavanppa<br>da Water<br>Tank | CBD<br>Guest<br>House | Limit # | Unit               |
|-----------------------|---------------------------|-----------------------------|-----------------------------|------------------------|----------------------------------|-----------------------------|--------------------------|--------------------------|------------------------------|-----------------------|---------|--------------------|
| Sampling Date         | 28.08                     | 3.2015                      | 28.09.                      | .2015                  | 30.10.2                          | 015                         | 27.11                    | .2015                    | 30.12.2                      | 2015                  |         |                    |
| PM <sub>2.5</sub>     | 12.0                      | 42.5                        | 45.8                        | 32.1                   | 49.6                             | 50.4                        | 50.4                     | 44.6                     | 52.3                         | 48.2                  | 60.0    | μg/m³              |
| PM <sub>10</sub>      | 60.8                      | 63.3                        | 70.4                        | 57.1                   | 64.6                             | 66.3                        | 59.6                     | 49.6                     | 62.1                         | 64.6                  | 100.0   | μg/m³              |
| SO <sub>2</sub>       | 12.7                      | 13.7                        | 9.1                         | 8.5                    | 10.4                             | 11.2                        | 11.4                     | 10.3                     | 12.1                         | 11.0                  | 80.0    | μg/m³              |
| NO <sub>X</sub>       | 20.3                      | 18.3                        | 13.5                        | 19.8                   | 13.6                             | 17.3                        | 12.0                     | 11.1                     | 12.1                         | 11.8                  | 80.0    | μg/m³              |
| СО                    | 0.3                       | 0.3                         | 0.3                         | 0.3                    | 0.2                              | 0.3                         | 0.2                      | 0.2                      | 0.2                          | 0.2                   | 4.0     | mg/ m <sup>3</sup> |
| Lead                  | ND                        | ND                          | ND                          | ND                     | ND                               | ND                          | ND                       | ND                       | ND                           | ND                    | 1.0     | μg/m³              |
| NH <sub>3</sub>       | ND                        | ND                          | ND                          | ND                     | ND                               | ND                          | ND                       | ND                       | ND                           | ND                    | 400.0   | μg/m³              |
| NMHC                  | ND                        | ND                          | ND                          | ND                     | ND                               | ND                          | ND                       | ND                       | ND                           | ND                    | 0.24    | ppm                |

ND – Not detected.

The concentration of Particulate Matter - 10 micron (PM10) / Respirable particulate matter was observed above 50  $\mu$ g/m³ at all sampling locations in this period. The level of Particulate Matter - 2.5 micron (PM 2.5) was also higher side except Panvel CIDCO Office location. Amongst gaseous pollutant, Nitrogen Oxide level was higher than others probably due to high vehicular load in the region. Concentration of lead, Ammonia and NMHC was not detected during the survey period. Over all air pollutants level was observed below NAAQS standards.

## **Ambient Noise Level Monitoring Report**

Ambient Noise level was monitored over 24 hours' duration for Day and Night time as per Schedule - II of Environmental Protection Act 1986.

Table no. 2: Ambient noise level monitoring of various stations of project area.

| Sr. | Sampling Location         | Sampling   | Date Time (Leq) |      |      | Night Time (Leq) |      |      | Limiting Standard (Leq) as per EPA Schedule II. |                  |  |
|-----|---------------------------|------------|-----------------|------|------|------------------|------|------|-------------------------------------------------|------------------|--|
| No. |                           | Date       | Max             | Min  | Avg  | Max              | Min  | Avg  | Day Time dB(A)                                  | Night Time dB(A) |  |
| 1.  | Panvel CIDCO Office       | 28.08.2015 | 77.5            | 52.5 | 66.4 | 70.4             | 47.5 | 55.8 | 75                                              | 70               |  |
| 2.  | Kalmboli CIDCO Office     |            | 96.1            | 66.3 | 74.3 | 83.7             | 61.4 | 67.6 | 75                                              | 70               |  |
| 3.  | Kharghar CIDCO Office     | 28.09.2015 | 93.5            | 56.6 | 73.2 | 82.4             | 54.5 | 65.8 | 75                                              | 70               |  |
| 4.  | CBD CIDCO Office          |            | 75.9            | 55.9 | 61.0 | 67.9             | 54.6 | 58.8 | 75                                              | 70               |  |
| 5.  | MES School                | 30.10.2015 | 80.6            | 49.0 | 61.4 | 75.1             | 44.9 | 56.0 | 75                                              | 70               |  |
| 6.  | Paragaon High school      |            | 80.7            | 64.3 | 70.5 | 79.5             | 66.7 | 68.9 | 75                                              | 70               |  |
| 7.  | Ambuja Cement Ltd.        | 27.11.2015 | 74.5            | 49.6 | 55.5 | 61.3             | 41.1 | 47.6 | 75                                              | 70               |  |
| 8.  | Pansil Guest House, Nerul |            | 72.7            | 53.3 | 62.1 | 79.7             | 44.1 | 59.6 | 75                                              | 70               |  |
| 9.  | Gavanpada Water Tank      | 30.12.2015 | 94.1            | 51.6 | 67.9 | 82.5             | 59.1 | 67.9 | 75                                              | 70               |  |
| 10. | CIDCO Guest House         |            | 73.5            | 43.6 | 54.3 | 80.7             | 45.1 | 52.4 | 75                                              | 70               |  |

At day time the average noise level was observed in the range of 55-74.3 dB(A) & Night time 47-68 dB(A) at all locations during sampling period. The noise level for day / night time was observed high at Kalmboli CIDCO office area due to transportation of commercial vehicles. It is that observed sound level are below EPA Standards at all locations.

## **Soil Quality Monitoring Report**

Soil samples collected from proposed project locations & analyzed for physicochemical characteristics by standard IS methods. The concentration of useful nutrients like of Organic Carbon, Nitrogen, Phosphorous, Potassium was observed favorable for plantation.

Table no. 3: Soil analysis of various stations of project area during August to December 2015

| Sr. | Locations     | Koli  | Kopar | Kombadbhuje | Ulwe  | Paragaon | Chinchpada | Vaghivali | Vaghiwaliwada | Ganeshpuri | Targhar |       |
|-----|---------------|-------|-------|-------------|-------|----------|------------|-----------|---------------|------------|---------|-------|
| No  | Sampling Date | 28.8. | 2015  | 28.09.201   | 5     | 30.1     | 0.2015     | 27        | .11.2015      | 30.12.2    | 015     | Unit  |
| 1.  | рН            | 6.7   | 6.9   | 6.12        | 6.38  | 6.76     | 7.12       | 7.24      | 6.54          | 6.82       | 7.24    |       |
| 2.  | TOC           | 2.02  | 6.4   | 18.8        | 17.3  | 2.1      | 1.8        | 2.8       | 2.4           | 2.4        | 1.1     | %     |
| 3.  | TKN           | 21    | 22    | 110         | 70.5  | 12.8     | 8.1        | 28        | 28            | 2.8        | 2.8     | mg/kg |
| 4.  | Conductivity  | 140.3 | 140.3 | 132.3       | 130.2 | 130.2    | 124.1      | 133.1     | 124.2         | 132        | 121.1   | μS/cm |
| 5.  | Ca            | 112   | 136   | 264         | 176   | 124      | 125        | 242       | 112           | 96         | 114     | mg/kg |
| 6.  | Mg            | 24    | 28.8  | 43          | 110   | 20       | 26         | 48        | 48            | 18         | 62      | mg/kg |
| 7.  | Sulphate      | 52    | 78.6  | 260         | 240   | 62       | 74         | 254       | 149           | 62         | 44      | mg/kg |
| 8.  | Chlorides     | 29    | 57.8  | 67          | 39    | 51       | 60         | 62        | 72            | 59         | 72      | mg/kg |
| 9.  | Na            | 60.5  | 2431  | 25          | 154   | 31.2     | 24         | 21        | 14            | 24         | 18      | mg/kg |
| 10. | К             | 294   | 390   | 210         | 261   | 126      | 39         | 52        | 26            | 104        | 24      | mg/kg |
| 11. | Phosphates    | 2.1   | 3.91  | 1.2         | 2.4   | NIL      | 1.6        | 1.1       | NIL           | NIL        | 0.8     | mg/kg |
| 12. | Iron          | NIL   | 1.12  | 4.4         | 4.2   | NIL      | NIL        | 2.1       | 1.8           | NIL        | NIL     | mg/kg |
| 13. | Lead          | NIL   | 119   | 38          | 15    | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 14. | Copper        | NIL   | NIL   | NIL         | NIL   | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 15. | Nickel        | NIL   | 3     | NIL         | NIL   | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 16. | Zinc          | NIL   | 3     | 2           | 1     | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 17. | Chromium      | 21    | 17    | 21          | NIL   | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |

Post Environmental Clearance Monitoring Report for Navi Mumbai International Airport

| Sr. | Locations     | Koli  | Kopar | Kombadbhuje | Ulwe | Paragaon | Chinchpada | Vaghivali | Vaghiwaliwada | Ganeshpuri | Targhar |       |
|-----|---------------|-------|-------|-------------|------|----------|------------|-----------|---------------|------------|---------|-------|
| No  | Sampling Date | 28.8. | 2015  | 28.09.201   | 5    | 30.1     | 0.2015     | 27        | .11.2015      | 30.12.2    | 015     | Unit  |
| 18. | Mercury       | NIL   | NIL   | NIL         | NIL  | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 19. | Manganese     | 1     | 9     | 1           | NIL  | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 20. | Aluminum      | NIL   | NIL   | NIL         | NIL  | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 21. | Cobalt        | NIL   | NIL   | NIL         | NIL  | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 22. | Cadmium       | 5     | NIL   | 4           | 1    | 3        | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |
| 23. | Arsenic       | NIL   | NIL   | NIL         | NIL  | NIL      | NIL        | NIL       | NIL           | NIL        | NIL     | mg/kg |

There was marginal high level of heavy metals observed (at Koli, Kopar Kombadbhuje & Ulwe) This may be due to previous landfilling activity by CIDCO but not to other locations. Over all soil quality was observed fertile in nature and suitable to grow local plants varieties at all locations.

## **Ground Water Quality Analysis**

The physicochemical analysis of ground water study showed considerable variation. Some ground water parameters were within desirable limit, some between desirable and permissible limit and few exceeded the permissible limit. The ground water did not fully comply the quality standard requirements as per IS 10500 revised in 2012 for purpose of drinking water.

Table no. 4: Ground water analysis of various stations of project area during august to December 2015

| Sr.<br>No. | Sampling<br>Locations |      | Koli |      |      | Кора | r    | Pa   | ragac | n    | Ch   | inchpa | da   | Vagl | niwaliv | vada | UI  | we   | Gane | shpuri | Vag  | hivali | Tar  | ghar | Komba | dbhuje |
|------------|-----------------------|------|------|------|------|------|------|------|-------|------|------|--------|------|------|---------|------|-----|------|------|--------|------|--------|------|------|-------|--------|
|            |                       | Aug  | Oct  | Dec  | Aug  | Oct  | Dec  | Aug  | Oct   | Dec  | Aug  | Oct    | Dec  | Aug  | Oct     | Dec  | Sep | Nov  | Sept | Nov    | Sept | Nov    | Set  | Nov  | Sep   | Nov    |
|            | Date                  |      |      |      |      |      |      |      |       |      |      |        |      |      |         |      |     |      |      |        |      |        |      |      |       |        |
| 1          | рН                    | 5.26 | 6.94 | 6.69 | 7.12 | 7.57 | 6.69 | 7.01 | 6.61  | 7.42 | 7.11 | 6.34   | 7.42 | 7.32 | 7.29    | 7.42 | 6.3 | 6.62 | 6.62 | 6.94   | 7.37 | 7.37   | 7.05 | 7.65 | 7.02  | 10.3   |
| 2          | Temperature,          | 28   | 28   | 28   | 28   | 28   | 28   | 28   | 28    | 28   | 29   | 29     | 28   | 28   | 28      | 28   | 28  | 28   | 28   | 28     | 29   | 26     | 29   | 28   | 28    | 28     |
|            | °C                    |      |      |      |      |      |      |      |       |      |      |        |      |      |         |      |     |      |      |        |      |        |      |      |       |        |
| 3          | Turbidity,<br>NTU     | NIL   | NIL  | NIL  | NIL    | NIL  | NIL  | NIL     | NIL  | NIL | NIL  | NIL  | NIL    | NIL  | Nil    | NIL  | NIL  | NIL   | NIL    |
| 4          | Alkalinity,<br>mg/L   | 46   | 58   | 60   | 440  | 78   | 60   | 114  | 38    | 34   | 144  | 80     | 34   | 126  | 58      | 58   | 178 | 178  | 160  | 160    | 108  | 112    | 158  | 152  | 166   | 186    |
| 5          | Salinity, ppt         | 4.28 | 1.7  | 5.56 | 1.5  | 1.9  | 5.56 | 1.9  | 1.9   | 2.6  | 1.1  | 1.5    | 2.6  | 1.3  | 1.9     | 2.1  | 1.1 | 1.5  | 0.64 | 0.85   | 1.3  | 2.14   | 0.8  | 1.3  | 0.42  | 2.35   |
| 6          | TKN, mg/L             | 154  | 159  | 168  | NIL  | NIL  | 168  | 134  | 13    | NIL  | NIL  | NIL    | NIL  | 126  | 104     | 98   | 2.8 | 3.4  | 2.8  | 3.1    | 2.8  | 89.6   | 11.8 | 12.3 | 7.2   | 7.6    |

Post Environmental Clearance Monitoring Report for Navi Mumbai International Airport

| Sr. | Sampling<br>Locations              |       | Koli |     |      | Кора | r   | Pa  | ragac | n   | Ch  | inchpa | ada | Vagl | niwaliv | vada | UI  | we  | Gane | shpuri | Vag  | hivali | Tar | ghar | Komba | dbhuje |
|-----|------------------------------------|-------|------|-----|------|------|-----|-----|-------|-----|-----|--------|-----|------|---------|------|-----|-----|------|--------|------|--------|-----|------|-------|--------|
|     | Sampling<br>Date                   | Aug   | Oct  | Dec | Aug  | Oct  | Dec | Aug | Oct   | Dec | Aug | Oct    | Dec | Aug  | Oct     | Dec  | Sep | Nov | Sept | Nov    | Sept | Nov    | Set | Nov  | Sep   | Nov    |
| 7   | Total P, mg/L                      | 1.41  | 3.6  | 2.8 | 2.06 | 2.8  | 2.8 | 4.3 | 4.6   | 1.3 | 3.4 | 3.7    | 1.3 | 2.9  | 6.4     | 3.2  | 2.8 | 3.5 | 5.3  | 6.6    | 5.9  | 2.3    | 3.5 | 4.8  | 3.2   | 5.4    |
| 8   | DO, mg/L                           | 3.2   | 5.7  | 3.9 | 2.5  | 4.2  | 3.9 | 2.7 | 5.6   | 4.8 | 3.3 | 4.7    | 4.8 | 3.6  | 5.3     | 5.6  | 5.3 | 5.3 | 4.9  | 5      | 5    | 5.2    | 5   | 5.2  | 4.7   | 4.9    |
| 9   | BOD, mg/L                          | 16    | 10   | 24  | 18   | 18   | 24  | 10  | 10    | 28  | 4   | 14     | 28  | 32   | 16      | 18   | 10  | 12  | 10   | 8      | 8    | 28     | 12  | 28   | 10    | 8      |
| 10  | COD, mg/L                          | 56    | 38   | 60  | 56   | 67   | 60  | 37  | 38    | 70  | 19  | 48     | 70  | 112  | 58      | 60   | 48  | 48  | 29   | 29     | 28   | 57     | 29  | 76   | 29    | 30     |
| 11  | Oil & Grease,<br>mg/L              | , NIL | NIL  | NIL | NIL  | NIL  | NIL | NIL | NIL   | NIL | NIL | NIL    | NIL | NIL  | NIL     | NIL  | NIL | NIL | NIL  | NIL    | NIL  | NIL    | NIL | NIL  | NIL   | NIL    |
| 12  | Residual Free<br>Chlorine,<br>mg/L | NIL   | NIL  | NIL | NIL  | NIL  | NIL | NIL | NIL   | NIL | NIL | NIL    | NIL | NIL  | NIL     | NIL  | NIL | NIL | NIL  | NIL    | NIL  | NIL    | NIL | NIL  | NIL   | NIL    |
|     | Hardness (as<br>CaCO₃), mg/L       | 230   | 250  | 248 | 330  | 318  | 248 | 156 | 186   | 188 | 346 | 324    | 188 | 164  | 180     | 174  | 140 | 122 | 172  | 178    | 180  | 208    | 180 | 196  | 240   | 246    |
| 14  |                                    | 11    | 43   | 43  | 93   | 109  | 43  | 33  | 52    | 52  | 79  | 91     | 52  | 24   | 38      | 42   | 38  | 28  | 45   | 47     | 311  | 264    | 46  | 292  | 57    | 66     |
| 15  | TDS, mg/L                          | 80    | 70   | 90  | 180  | 180  | 90  | 110 | 90    | 120 | 170 | 170    | 120 | 70   | 80      | 110  | 140 | 80  | 110  | 120    | 420  | 460    | 120 | 360  | 130   | 180    |

Nitrate was found high at Kopar (12.9 mg/l) in the month of August and October; at Pargaon and Chinchpada (11.2 mg/l) during December 2015; at Targhar (10.9 mg/l) during September 2015 there is evidence that more than 10 mg/l of Nitrate is lethal, may cause Methamoglobinema ("blue baby syndrome").

The quality of collected ground water was not suitable for drinking purpose due to the presence of nutrients, Fecal coliform, E. coli colonies & heterotrophic bacteria at all locations i.e. Koli, Kopar, Pargaon, Chinchpada, Vaghiwaliwada, Ulwe, Ganeshpuri, Vaghivali, Targhar & Kombadbhuje.

## **Marine Water Quality Analysis:**

#### **Physicochemical Parameters:**

Marine samples were collected from pre-decided sampling locations in Gadhi River, Ulwe River and Panvel Creek. Sampling locations were approached by boat (wherever possible) and collection done irrespective of tide. Depending of water depth at sampling location during sampling, both (surface and bottom) samples were collected. The samples were preserved and analyzed for Biological and Physicochemical parameters.

Figure 1 depicts sampling location map. Stations 1 to 10 are located in Gadhi River & Station 11 & 13 are in Panvel Creek while station 12 in Ulwe River. A good amount of mangrove vegetation was noted on either side of stream from station 4 to 6.

Table no. 5: Marine water physicochemical analysis of various stations of project area during November 2015

| Sr. | Davamatav        | W 1    | W 2    | W 3    | W 4    | v      | V 5    | v      | V 6    | V      | N 7    | v      | V 8    |
|-----|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| No. | Parameter        | S      | S      | S      | S      | S      | В      | S      | В      | S      | В      | S      | В      |
| 1.  | рН               | 6.90   | 6.98   | 7.02   | 6.80   | 7.01   | 6.78   | 7.01   | 7.17   | 7.00   | 7.06   | 7.03   | 6.79   |
| 2.  | Floating Matter  | Absent |
| 3.  | Turbidity, NTU   | NIL    | 13.9   | 11.7   | 13.9   | NIL    | NIL    |
| 4.  | Temperature, ° C | 28.1   | 28.0   | 28.0   | 28.0   | 28.0   | 28.0   | 28.0   | 27.2   | 27.8   | 28.2   | 28.0   | 28.1   |
| 5.  | Salinity, ppt    | 2.66   | 3.42   | 9.88   | 10.8   | 11.1   | 12.2   | 12.1   | 13.2   | 13.3   | 13.4   | 12.4   | 13.2   |
| 6.  | TSS, mg/L        | 116    | 123    | 23655  | 288    | 376    | 267    | 243    | 305    | 302    | 303    | 262    | 334    |
| 7.  | TDS, mg/L        | 6130   | 10915  | 222    | 28520  | 26475  | 31355  | 30740  | 32540  | 29210  | 33855  | 32355  | 33700  |
| 8.  | TOC, mg/L        | 1.5    | 1.4    | 1.2    | 1.4    | 2.0    | 2.2    | 2.1    | 2.2    | 2.3    | 2.4    | 1.7    | NIL    |
| 9.  | DO, mg/L         | 4.9    | 5.0    | 5.2    | 5.0    | 5.0    | 4.9    | 5.4    | 5.3    | 4.5    | 5.2    | 5.2    | 4.9    |
| 10. | BOD, mg/L        | 24     | 38     | 26     | 18     | 10     | 14     | 10     | 6      | 14     | 16     | 22     | 20     |
| 11. | O&G, mg/L        | NIL    |
| 12. | Sulphate, mg/L   | 16.3   | 9.0    | 27.0   | 12.0   | 13.1   | 18.9   | 21.8   | 20     | 30     | 30.7   | 32     | 22     |

| Sr. | Davameter                        | W 1  | W 2  | W 3  | W 4  | v   | V 5  | v    | V 6  | \    | N 7  | v    | V 8  |
|-----|----------------------------------|------|------|------|------|-----|------|------|------|------|------|------|------|
| No. | Parameter                        | S    | S    | S    | S    | S   | В    | S    | В    | S    | В    | S    | В    |
| 13. | Nitrite, mg/L                    | NIL  | NIL  | NIL  | NIL  | NIL | NIL  | NIL  | NIL  | NIL  | NIL  | NIL  | NIL  |
| 14. | Nitrate, mg/L                    | NIL  | NIL  | NIL  | NIL  | NIL | NIL  | NIL  | NIL  | NIL  | NIL  | NIL  | NIL  |
| 15. | TAN, mg/L                        | 16.8 | 13.7 | 10.0 | 28.0 | 1.9 | 3.92 | 11.7 | 11.4 | 6.72 | 7.5  | 4.2  | 11.2 |
| 16. | Inorganic PO <sub>4</sub> , mg/L | 2.8  | 2.8  | NIL  | NIL  | 7.1 | 2.2  | 1.3  | NIL  | NIL  | 1.5  | 1.7  | NIL  |
| 17. | Ca, mg/L                         | 100  | 256  | 832  | 408  | 376 | 520  | 488  | 424  | 592  | 472  | 456  | 480  |
| 18. | Mg, mg/L                         | 202  | 412  | 609  | 484  | 936 | 1108 | 1032 | 1147 | 1204 | 1209 | 1075 | 1094 |

Table no. 5: Marine water physicochemical analysis of various stations of project area during November 2015 continued....

| Sr. | Dawawataw        | v      | <b>/</b> 9 | w      | 10     | w      | 11     | w      | 12     | w      | 13     |
|-----|------------------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| No. | Parameter        | S      | В          | S      | В      | S      | В      | S      | В      | S      | В      |
| 1.  | рН               | 6.94   | 6.98       | 6.96   | 6.87   | 6.87   | 7.02   | 7.10   | 6.99   | 6.96   | 6.94   |
| 2.  | Floating Matter  | Absent | Absent     | Absent | Absent | Absent | Absent | Absent | Absent | Absent | Absent |
| 3.  | Turbidity, NTU   | 3.2    | 17.1       | 7.5    | 24.6   | 6.4    | 19.2   | NIL    | 6.4    | 12.8   | 3.2    |
| 4.  | Temperature, ° C | 27.7   | 28.2       | 27.9   | 28.3   | 28.1   | 27.5   | 28.3   | 28.3   | 28.1   | 27.7   |
| 5.  | Salinity, ppt    | 13.3   | 13.3       | 12.2   | 13.2   | 12.3   | 12.5   | 6.1    | 10.0   | 10.1   | 13.3   |
| 6.  | TSS, mg/L        | 329    | 271        | 419    | 277    | 304    | 281    | 191    | 377    | 276    | 329    |
| 7.  | TDS, mg/L        | 31390  | 34180      | 31810  | 5180   | 32025  | 31300  | 19385  | 31885  | 31855  | 31390  |
| 8.  | TOC, mg/L        | 2.5    | 2.6        | 2.1    | 2.2    | 1.6    | 1.7    | 4.4    | NIL    | NIL    | 2.5    |
| 9.  | DO, mg/L         | 5.0    | 5.1        | 5.0    | 5.2    | 5.2    | 4.9    | 5.4    | 5.5    | 5.0    | 5.0    |
| 10. | BOD, mg/L        | 18     | 18         | 14     | 18     | 24     | 32     | 24     | 18     | 14     | 18     |
| 11. | O&G, mg/L        | NIL    | NIL        | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    |
| 12. | Sulphate, mg/L   | 16.0   | 10.9       | 14.0   | 19.5   | 35.0   | 32.0   | 30.0   | 32.0   | 20.4   | 16.0   |
| 13. | Nitrite, mg/L    | NIL    | NIL        | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    |
| 14. | Nitrate, mg/L    | NIL    | NIL        | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    | NIL    |

Post Environmental Clearance Monitoring Report for Navi Mumbai International Airport

| Sr. | Darameter                           | v    | V 9  | W    | 10   | W    | 11   | w   | 12   | w    | 13   |
|-----|-------------------------------------|------|------|------|------|------|------|-----|------|------|------|
| No. | Parameter                           | S    | В    | S    | В    | S    | В    | S   | В    | S    | В    |
| 15. | TAN, mg/L                           | 7.8  | 4.2  | 14.5 | 6.7  | 7.5  | 8.4  | 4.7 | 7.3  | 12.3 | 7.8  |
| 16. | Inorganic PO <sub>4</sub> ,<br>mg/L | 6.7  | 4.7  | 3.1  | NIL  | NIL  | 4.3  | 4.4 | NIL  | NIL  | 6.7  |
| 17. | Ca, mg/L                            | 376  | 568  | 536  | 592  | 496  | 488  | 424 | 400  | 448  | 376  |
| 18. | Mg, mg/L                            | 1281 | 1137 | 1089 | 1114 | 1056 | 1176 | 734 | 1195 | 1224 | 1281 |

The results of analysis shown in the Table no. 5 the observations were noted as below:

The pH value ranged from 6.80 to 7.03 at surface and 6.78 to 7.17 at bottom suggest the acidic to basic nature of water. Salinity was low due to influx of fresh water. The high total suspended solids were found at surface of water at station 3 due to accumulation of discharge from surrounding villages in the Gadhi river. The Total dissolved solids were noted high which suggest the high concentration of dissolved salts and deteriorated quality of water. Total organic carbon was noted low which suggest there were no accumulation of organic matter in water body. DO within normal limit suggest good amount of dissolved oxygen in the water body to support living organism. BOD value suggest the presence of biodegradable organic wastes present in water body which comes as domestic waste and discharge of sewage from surrounding areas. The Sulphate value were found in low concentration which represents anthropogenic contamination. Total ammonical nitrogen were low in water body. Inorganic phosphate was found in low concentration. The concentration of Calcium & Manganese was high due natural origin. but concentration of Iron was low.

# **Biological Parameters:**

Biological parameters viz. Phytoplankton, Zooplankton, Benthos and Microbiology were analyzed.

Table no. 6: Marine water biological analysis of various stations of project area during November 2015

| Comula Dataila | Donomoton                                              | W 1                                                            | W 2                                                            | W 3                                                            | W 4                                                               | W     | 5                 | V                | V 6                                        |
|----------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------|-------------------|------------------|--------------------------------------------|
| Sample Details | Parameter                                              | S                                                              | S                                                              | S                                                              | S                                                                 | S     | В                 | S                | В                                          |
|                | Population (no x<br>103/L)                             | 197.6                                                          | 158.4                                                          | 146.4                                                          | 132.8                                                             | 178.4 | 65.6              | 44.8             | 20.8                                       |
|                | Total Genera                                           | 21                                                             | 16                                                             | 13                                                             | 15                                                                | 11    | 12                | 14               | 10                                         |
| Phytoplankton  | Major Genera                                           | Scenedesmus,<br>Thalassiosira,<br>Leptocylindrus<br>, Navicula | Nitzschia,<br>Scenedesmus,<br>Thalassiosira,<br>Leptocylindrus | Thalassiosira,<br>Leptocylindrus<br>, Navicula,<br>Skeletonema | Thalassiosira,<br>Leptocylindrus<br>, Chaetoceros,<br>Skeletonema |       | -                 | Thala:<br>Leptoc | schia,<br>ssiosira,<br>ylindrus,<br>tonema |
|                | Diversity Index                                        | 2.19                                                           | 1.42                                                           | 1.48                                                           | 1.79                                                              | 1.4   | 45                | 2                | .01                                        |
| Zooplankton    | Population<br>(no x 103/100m3)                         | 93.00                                                          | 109.60                                                         | 87.47                                                          | 2.05                                                              | 0.3   | 32                | 27               | 7.95                                       |
|                | Total Group                                            | 3                                                              | 4                                                              | 2                                                              | 3                                                                 | 2     | 1                 |                  | 7                                          |
|                | Major Groups                                           | Copepods                                                       | Copepods                                                       | Copepods                                                       | Copepods,<br>Acetes sp                                            |       | opods,<br>minifer |                  | tes sp,<br>epods                           |
|                | Biomass<br>(ml/100m3)                                  | 20.00                                                          | 6.67                                                           | 4.42                                                           | 2.99                                                              | 1.    | 57                | 12               | 1.44                                       |
|                | Diversity Index                                        | 0.16                                                           | 0.00                                                           | 0.00                                                           | 0.21                                                              | 0.    | 59                | 1                | .02                                        |
| Benthos        | Population<br>( no x 10 <sup>2/</sup> m <sup>2</sup> ) | 0.83                                                           | 0.00                                                           | 12.50                                                          | 4.58                                                              | 5.4   | 42                | 1:               | 1.66                                       |
|                | Total Group                                            | 1                                                              | 0                                                              | 2                                                              | 2                                                                 | 1     | L                 |                  | 4                                          |

| Cample Dataile | Downwater        | W 1        | W 2  | W 3                    | W 4                    | W    | 5      | V                  | V 6 |
|----------------|------------------|------------|------|------------------------|------------------------|------|--------|--------------------|-----|
| Sample Details | Parameter        | S          | S    | S                      | S                      | S    | В      | S                  | В   |
|                | Major group      | Polychaete | -    | Polychaete,<br>Bivalve | Polychaete,<br>Bivalve | Poly | chaete | Polycha<br>Sipuncu | -   |
|                | Biomass (gm/ m2) | 0.67       | 0.00 | 148.66                 | 44.52                  | 0.0  | 65     | 5                  | .47 |
|                | Diversity Index  | 0.00       | 0.00 | 0.69                   | 0.59                   | 0.0  | 00     | 0                  | .81 |
| NA' le' - le - | Coliform/100 ml  | *P         | *A   | *P                     | *P                     | *P   | *A     | *P                 | *P  |
| Microbiology   | E. coli          | *A         | *A   | *A                     | *A                     | *A   | *A     | *A                 | *A  |

Table no. 6: Marine water biological analysis of various stations of project area during November 2015 continued

| Consider Describe |                                | W                                         | 7             | W               | 18                                    | W               | 19                                   | W     | 10                         | w                 | 11                                       | W 12                                                          | w                | 13                                      |
|-------------------|--------------------------------|-------------------------------------------|---------------|-----------------|---------------------------------------|-----------------|--------------------------------------|-------|----------------------------|-------------------|------------------------------------------|---------------------------------------------------------------|------------------|-----------------------------------------|
| Sample Details    | Parameter                      | S                                         | В             | S               | В                                     | S               | В                                    | S     | В                          | S                 | В                                        | S                                                             | S                | В                                       |
|                   | Population (no x<br>103/L)     | 43.2                                      | 28.2          | 43.2            | 17.6                                  | 21.6            | 13.6                                 | 14.4  | 20                         | 35.2              | 23.2                                     | 475.2                                                         | 44.8             | 53.6                                    |
|                   | Total Genera                   | 15                                        | 13            | 13              | 11                                    | 8               | 9                                    | 12    | 12                         | 12                | 10                                       | 12                                                            | 15               | 14                                      |
| Phytoplankton     | Major Genera                   | Skeleto<br>Nitzschi<br>Skeleto<br>Thalass | ia,<br>nema , | Nitzs<br>Thalas | onema<br>schia,<br>siosira,<br>otella | Skelet<br>Nitzs | siosira,<br>onema<br>chia ,<br>ardia | Cyclo | onema<br>Itella,<br>Ilenia | Leptocy<br>, Nitz | siosira,<br>ylindrus<br>schia ,<br>onema | Navicula,<br>Thalassiosira,<br>Leptocylindrus,<br>pleurosigma | Skeleto<br>Nitzs | ssiosir,<br>onema ,<br>ochia,<br>oceros |
|                   | Diversity Index                | 2.                                        | 47            | 2               | .25                                   | 2.              | 20                                   | 2.    | 45                         | 2.                | 10                                       | 1.58                                                          | 2.               | 31                                      |
|                   | Population<br>(no x 103/100m3) | 7.                                        | 64            | 43              | .72                                   | 37              | .39                                  | 44    | .04                        | 44                | .85                                      | 89.50                                                         | 29               | .90                                     |
| Zooplankton       | Total Group                    | 6                                         | 5             |                 | 6                                     |                 | 6                                    | 6     | 5                          |                   | 6                                        | 6                                                             | (                | 5                                       |
|                   | Major Groups                   |                                           | es sp<br>pods |                 | es sp<br>epods                        |                 | es sp<br>epods                       | •     | pods,<br>es sp             |                   | es sp,<br>epods                          | Foraminiferans, lamelllibranchs                               |                  | es sp,<br>epods                         |

| Consula Batalla | 5                                                      | W   | 7  | w               | 8              | W                 | / 9  | w                 | 10   | w  | 11  | W 12                     |   | w                   | 13   |
|-----------------|--------------------------------------------------------|-----|----|-----------------|----------------|-------------------|------|-------------------|------|----|-----|--------------------------|---|---------------------|------|
| Sample Details  | Parameter                                              | S   | В  | S               | В              | S                 | В    | S                 | В    | S  | В   | S                        |   | S                   | В    |
|                 | Biomass<br>(ml/100m3)                                  | 59. | 62 | 141             | 04             | 119               | 9.04 | 172               | 2.69 | 15 | 592 | 40.00                    |   | 114                 | 1.78 |
|                 | Diversity Index                                        | 0.7 | 79 | 0.8             | 84             | 0.                | 86   | 0.                | 92   | 0. | 92  | 1.46                     |   | 1.                  | 16   |
|                 | Population<br>( no x 10 <sup>2/</sup> m <sup>2</sup> ) | 0.0 | 00 | 130             | ).81           | 97                | .90  | 101               | L.65 | 0. | 00  | 1.25                     |   | 142                 | 2.89 |
| Benthos         | Total Group                                            | 0.0 | 00 | 3               |                |                   | 2    | 3                 | 3    |    | )   | 2                        |   | 3                   | 3    |
|                 | Major group                                            | -   |    | Poly<br>Sipuncu | chaete,<br>ıla | Polycha<br>Amphir | -    | Polycha<br>Amphip | -    | -  |     | Polychaete,<br>Amphipods |   | Polychae<br>Amphipo | -    |
|                 | Biomass (gm/ m2)                                       | 0.0 | 00 | 10.             | .23            | 5.                | 10   | 9.                | 70   | 0. | 00  | 0.44                     |   | 8.                  | 69   |
|                 | Diversity Index                                        | 0.0 | 00 | 0.              | 14             | 0.                | 03   | 0.                | 05   | 0. | 00  | 0.64                     | • | 0.                  | 34   |

| Microbiology              | Coliform/100 ml | *A | *A | *A | *P | *A | *A | *A | *A | *A | *A | *P | *A | *A |
|---------------------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                           | E. coli         | *A |
| *P – Present * A – Absent |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |

#### **Sampling Locations:**

W1 - Extreme end of Gadhi River (up-stream)

W2 - Near Pargaon Village (200 m from W1) in Gadhi River

W3 – Near Jui Village (300 m from W2) in Gadhi River

**W4** – Near Kopar Khadi (300m from W3) in Gadhi River

W5 – Near Vaghivali Village (500m from W4) in Gadhi River

W6 – Vaghivali Creek Junction (300m from W5) in Gadhi River

W7 – Near Kharghar Railway Station (300 m) in Gadhi River

W8 Near Belpada (300 m from W7) in Gadhi River

W9 - Near Kokan Bhavan (300m from W8) in Gadhi River

W10 – Near Divala Village (300m from W10) in Gadhi river

W11 – At junction of Ulwe and Gadhi River in Panvel Creek

**W12** – In Ulwe River

W13 – Near Rathi Bunder in Panvel Creek

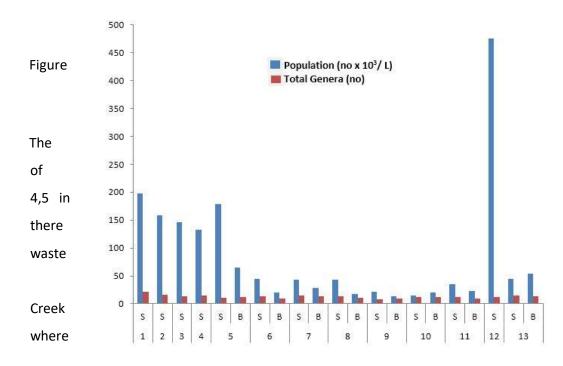
Where: S - Surface, B - Bottom

#### **Phytoplankton:**

Phytoplankton population density ranges from 13.60-475.2 x 10³/l, highest phytoplankton population at station 12 in Ulwe River may be due to influx of domestic water from surrounding villages; total generic groups ranges from 13-21 nos., maximum generic diversity observed at station 1 in upstream estuarine environment. Total Generic groups were noted as 32 of which *Nitzschia*, *Thalassiosira*, *Cyclotella* are most common ones, followed by rest of observed genera like *Pleurosigma*, *Navicula*, *Skeletonema*, *Biddulphia*, *Leptocylindrus*, *Gyrosigma*, *Scenedesmus* as major genera in Gadhi River. The other fresh water phytoplankton genera found are *Pediastrum*, *Actinastrum*, *Cosmarium*, *Phacus* (Solitary) and *Oscillatoria* (Filamentous). *Leptocylindrus* is common Genera noted in all 13 stations mostly present in surface water. The genera of phytoplankton represented in Figure no. 2. Graphical representation of phytoplankton population and total genera is represented in Figure no. 3.

## **Zooplankton:**

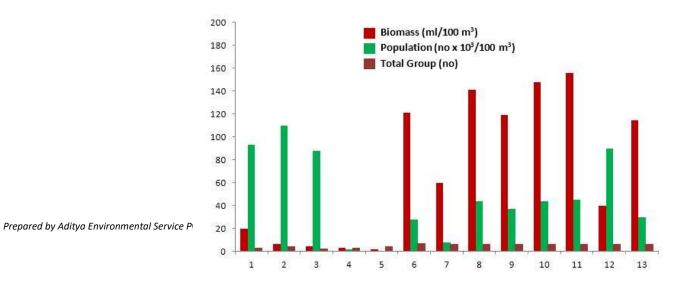
The zooplankton biomass ranged from  $1.57-172.69 \, \text{ml/} 100 \, \text{m}^3$  with population density of  $0.32109.60 \, \text{nox} 10^3 / 100 \, \text{m}^3$  while having low faunal group ranging from  $2-7 \, \text{nos}$ .


The zooplankton were noted with low population and low group diversity as well in Gadhi river, while inversely the zooplankton in Panvel creek was over populated with Acetes sp. obviously with high biomass. Acetes sp., Copepods, gastropods, lamellibranchs were common groups observed as shown in Figure no. 4 and Figure no. 5 represents zooplankton standing stock graphically.

#### **Benthos:**

Macro benthos studies showed in different benthic pattern. Macro-benthic biomass ranged from 0.00 to 148.66 gm/m<sup>2</sup> with population ranging from 0.00-  $142.89 \times 102/m^2$ . The faunal group found were Polychaete, Bivalves, Gastropods, Amhipods, Sipuncula, Crabs. At station 2, 7 and 11 no benthic samples collected because of rocky bottom. the benthos observed in water body was good in terms of living system of Benthos. The benthic organisms found at sampling area shown in Figure no. 6 and Figure no. 7 represents the graphical representation of population of benthic organisms' groups in percentage.

### Microbiology:


E. coli & coliform microbes were present/absent at 13 stations at surface and bottom levels. E. coli were absent while coliforms were occasionally present in either of water levels. No specific trend was observed.



no. 3: Graphical representation of phytoplankton population and total genera

above graph represents the population phytoplankton is more at stations 1,2,3 the Gadhi river and 12 in Ulwe River, is discharge of sewage and domestic is more. While at station 6,7, 8, 9 10 are proceeding from Gadhi River to Panvel and 11 and 13 are near to Panvel creek, phytoplankton population is less. The phytoplankton population trend is

almost same throughout the all stations.



24 of 29

Figure no. 5: Graphical representation of Zooplankton Biomass, Population and total group

The above graph represents the high biomass reported from station 6 to 13 due to presence of Acetes group, these locations are near to Mangrove habitats which suggest it is nursing ground for fishes, the total group is almost same. Where population is high at station 1, and 3 in no. of organisms. There is biomass, population and total group was less at station 4 and 5.

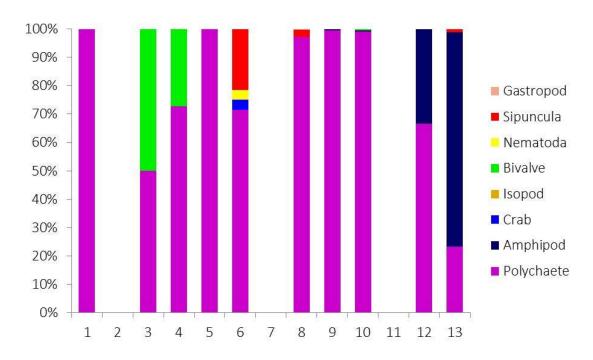



Figure no. 7: Graphical representation of population of benthic organisms

The above graph represents the Polychaete is major group at all stations except at station 13 where crab is major group. At station 3 and 4 Bivalve is present as minor group after Polychaete. At station 6 Sipuncula, Nematoda and crab are as minor group. At station 12 crab is present after

#### Section VI: Conclusion & Recommendation

On the basis of the impacts considering during the constructional phase of NMIA certain issues has been identified and their mitigation to minimize environmental impacts are suggested as below:

#### Air:

The air will get polluted by activities like excavation, land filling, controlled blasting, construction, material handling and transportation during construction phase due to traffic and high dust levels.

There will be provision for water sprinkling at the construction site for dust suppression. Trucks carrying earth, sand or stone will be covered with tarpaulin to avoid spilling. High tech equipment will be used for controlling blasting excavation which will generate minimal noise as well as dust. Construction machinery and equipment will be maintained in good working condition. All vehicles & construction equipment with internal combustion engines to reduce carbon particles, CO and HC emission. The vehicle which not meeting vehicular pollution standards will not be allowed within construction site.

#### **Biodiversity and forests:**

The loss of mangrove vegetation, marsh land will take place during construction phase.

There will be mangrove plantation over 245 ha. at Vaghivali on north of airport as mangrove park, which ensure regeneration of mangroves and aquatic flora & fauna associated with mangrove and add biodiversity of the region and will compensate the loss. Loss of estuarine biodiversity is temporary phase during construction of recourse channels for Ulwe and Gadhi Creek. It is expected that the biodiversity would equilibrate and resettle. In order to compensate loss of vegetation the plantation programme will be undertaken within airport area the plant would be local, fast growing and non-fruiting to reduce bird's mishaps. The contamination of estuary due to resuspension of sediments or dust from construction site both of which are temporary.

#### **Ecosystems:**

During the construction phase the ecological footprint will increase, the loss of marshy land ecosystem will take place, sediment runoff leading into the creek will damage local aquatic ecosystem.

During the dredging/channelization proper route alignment will be selected and dredging and excavation should be done in stages maintaining water flow, which will result the minimum impact of siltation and turbidity to reduce this impact on aquatic community, the dredging will be done in high tide. The Gadhi and Ulwe River going to recourse during the constructional phase, the proposed diverted alignment will have the same physiological characteristics to minimize the impacts on aquatic ecosystem. The turbidity will enhance during the diversion and will be temporary in nature.

The loss of marshy land is permanent. The alternate development of mangrove is part of mitigation activity.

#### Noise:

The noise will be generated due to blasting operations of hills, it will be onetime activity lasting for short duration, the impact of generated noise level on surrounding population will be negligible. Silencer will be used with equipments to reduce noise pollution. Hi tech instruments will be used to minimize noise level during blasting. Before controlled blasting the surrounding villages will be informed, the villagers and domestic animals will be offered safe place away from the project site. The construction activity which

produces high level of noise will be avoided between 10 pm to 6 am. The construction personnel exposed to high level noise will be provided with protective gear such as ear muffs. Equipments and construction machinery will be maintained properly to reduce noise.

#### **Energy:**

The consumption of energy will be increased during the construction phase.

Increase in energy consumption will increase air pollution at its source of generation. To reduce the use of energy maximum work should be carried in sun light and minimize the use of power during construction phase. Good insulators will be used to reduce the AC power consumption. Energy conservation programs/ protocols will be developed.

#### Land:

The change of river flow is inevitable and during the development due care will be taken to maintain the required hydraulic flow to avoid water logging in the upstream and also any water logging in the project area either during construction or operational phases.

#### Solid Waste:

The excavated material /construction waste would be used for land development or disposed off in pre-designates approved site.

#### Water:

The channelization of river will be carried out in stages keeping the water flow intact except for period during diversion of water course. This operation will result in minimum impact on community, the dredging will be done at high tide to reduce the impact of siltation and turbidity on aquatic community. For diversion of Ulwe and Gadhi river proper route will be selected which will have similar physiological characteristics.

The total water requirement which will be utilized in Airport development has been calculated which will minimize the use of water during construction phase.

#### **Conclusion:**

Air quality monitoring study shown that at all monitoring locations the level of air pollutants observed was below NAAQS level.

As per EPA standards noise level was below during ambient noise level monitoring.

The soil observed at all locations found fertile in nature suitable for growth of local plant verities.

There is considerable variation between the physicochemical parameters analyzed which do not comply with IS 10500 (2012) hence ground water is not potable, monitoring is needed and steps should be taken to improve the quality of drinking water to reduce undesirable health effects.

In the post monsoon study of November 2015 at all 13 stations, results as per tables in biological section show *Scenedesmus* afresh water phytoplankton represents the fresh water influx at 1 and 2 in Gadhi river; zooplankton high biomass in form of *Acetes sp.* population in Panvel Creek and vicinity of mangroves in that area shows it is nursing ground for *Acetes sp.* The Gadhi & Ulwe River samples were noted to be rich in phytoplankton density as well in diversity, at Station 7 as per diversity index indicated good health of phytoplankton population in Gadhi River. The pollution indicator genera *Skeletonema* is present all stations except 1, 2 and 12, which show presence of pollution in Gadhi as well as Panvel Creek. The zooplankton population, diversity and biomass as well were on lower side at Gadhi River, while with completely different scenario in Panvel creek which was rich in zooplankton standing stock. Benthic population doesn't show any specific trend. The low benthic diversity and standing stock may be able to be commented due to cosmopolitan hindrances as influx. Amongst the sampling locations, the richness and evenness of plankton is represented through diversity index.