ANNEXURE ENVIRONMENTAL COMPLIANCE MONITORING REPORT for Navi Mumbai International Airport (NMIA)

Sponsor:

City And Industrial Development Corporation of Maharashtra Ltd (CIDCO)

Period:

January to June 2016

PREPARED BY

ADITYA ENVIRONMENTAL SERVICES PVT.LTD.

MOEFCC Recognized Laboratory under EP Act 1986
Accredited under ISO 9001: 2008 & OHSAS 18001: 2007 by
ICQS OCI NABET Accredited EIA Consultancy Organization
www.aespl.co.in

QCI NABET Accredited EIA Consultancy Organization

www.aespl.co.in

Index

1.	INTRODUCTION	1
2.	SCOPE OF MONITORING WORK	1
	2.1 Scope of Monitoring Work as per CIDCO Tender:	1
	2.2 Locations of Monitoring:	2
	2.3 Period/Time of Sampling:	
	2.4 Constraints in completing Environmental Baseline Monitoring as per CIDCO Tender:	9
3.	METHODOLOGY ADOPTED FOR ENVIRONMENTAL MONITORING	. 10
	3.1 AMBIENT AIR QUALITY	. 10
	3.1.1 Reconnaissance Survey:	. 10
	3.1.2 Methodology for Ambient Air Quality Monitoring:	. 10
	3.1.3 SELECTION OF AIR SAMPLING LOCATION	. 11
	3.2 AMBIENT NOISE LEVEL	. 11
	3.2.1 Reconnaissance Survey:	. 11
	3.2.2 Methodology for Sample Collection	. 11
	3.3 Soil	. 11
	3.3.1 Reconnaissance Survey:	. 12
	3.3.2 Methodology of Sample Collection:	. 12
	3.4 GROUND WATER SAMPLING	. 12
	3.4.1 Reconnaissance Survey:	. 12
	3.3.2 Methodology of Sampling:	. 12
	3.5 MARINE WATER, SEDIMENTS & PLANKTON SAMPLING EQUIPMENTS	. 13
	3.5.1 Reconnaissance Survey:	. 13
	3.5.2 Methodology of Sampling:	. 13
	3.5.2.1 Niskin Bottle - Marine Water Sampler	. 13
	3.5.2.2 Plankton Net - Biological Samples	. 13
	3.5.2.3 Grab Sampler - For Marine Sediments	. 14
	3.5.2.4 Selection of Stations, Preservation and Transportation of Samples:	. 14
	3.6 Laboratory Credentials	. 16
4.	COMPILATION OF DATA & INFERENCE	. 17
	4.1 AMBIENT AIR QUALITY MONITORING REPORT	. 17
	4.1.1 AAQM DATA	. 17
	4.1.2 INFERENCE OF AAQM DATA	. 18

4.2	2 AMBIENT NOISE LEVEL MONITORING REPORT	<i>Index</i> 18
	4.2.1 Noise Level Data	18
	4.2.2 Inference of Noise Data	19
4.3	3 SOIL QUALITY MONITORING REPORT	19
	4.3.1 Soil Analysis Data	19
	4.3.2 Soil Data Inference:	21
4.4	4 GROUND WATER QUALITY ANALYSIS REPORT	21
	4.4.1 GW Analysis Data	21
	4.4.2 GW Analysis Inference:	25
4.5	5 MARINE WATER QUALITY ANALYSIS REPORT (PHYSICOCHEMICAL PARAMETERS)	25
	4.5.1 Analytical Data - Physicochemical Parameters:	25
	4.5.2 Inference - Physicochemical Parameters:	28
4.6	6 MARINE WATER QUALITY ANALYSIS REPORT (BIOLOGICAL PARAMETERS)	28
	4.6.1 Analytical Data - Biological Parameters:	28
	4.6.1 Inferences - Biological Parameters:	29
	4.6.1.1 Phytoplankton	29
	4.6.1.2 Zooplankton	30
	4.6.1.3 Benthos	31
	4.6.1.4 Microbiology	31
5.	CHAPTER V: CONCLUSION & RECOMMENDATION	32
5.	1 Ambient Air Quality	32
	5.1.1 Observations	32
	5.1.2 NMIA Pre- Development Activities and impacts anticipated on Air Quality:	32
	5.1.3 Mitigation Measures Proposed:	32
5.2	2 Ambient Noise:	33
	5.2.1 Observations from Data:	33
	5.2.2 NMIA Pre- Development Activities and impacts anticipated on Ambient N Levels:	
	5.2.3 Mitigation Measures Proposed:	33
5.3	3 Soil	35
	5.3.1 Observations from Data:	35
	5.3.2. NMIA Pre – Development Activities and impacts anticipated on soil:	35
	5.3.3 Mitigation measure proposed:	35
5.4	4 Ground Water:	35

5.4.1 Observations from Data:	<i>ndex</i> 35
5.4.2 NMIA Pre- Development Activities and impacts anticipated on Ground Water Quality:	35
5.4.3 Further Study Suggested:	36
5.5 Marine Water:	36
5.5.1 Observations from Data :	36
5.5.2 NMIA Pre- Development Activities and impacts anticipated on Marine Water Quality:	
5.5.3 Further Study Suggested:	36

Index

List of Tables

Table 2.1 Scope of Environmental Monitoring Work as per CIDCO Tender	2
Table 2.2 Details of Ambient Air Quality Monitoring Stations as per CIDCO Tender	
Table 2.3: Ambient Noise Level Monitoring Stations as per CIDCO Tender	4
Table 2.4 Soil Quality Monitoring Stations as per CIDCO Tender	5
Table 2.5: Details of Ground Water Quality Monitoring Stations as per CIDCO Tender	6
Table 2.6: Details of Marine Water Quality Monitoring Stations as per CIDCO Tender	6
Table 2.7: Period/Time of Sampling for this Survey	8
Table 4.1: Ambient air quality monitoring of various stations of project area during January to June 2016	17
Table 4.2: Ambient noise level monitoring of various stations of project area during January to June 2016	18
Table 4.3: Soil analysis of various stations of project area during January to June 2016	20
Table 4.4: Ground water analysis of various stations of project area during January to June 2016	22
Table 4.5: Marine water physicochemical analysis of various stations of project area during March 2016	25
Table 4.6: Marine water physicochemical analysis of various stations of project area during March 2016	
continued	26
Table 4.7: Marine water biological analysis of various stations of project area during March 2016	28

Index

List of Figures

igure 2.1: Map of Ambient Air Quality Monitoring Stations as per CIDCO Tender	3
igure 2.2: Map of Noise Level Monitoring Stations as per CIDCO Tender	
igure 2.3: Map of Soil Quality Monitoring Stations as per CIDCO Tender	
igure 2.4: Map of Surface Marine and Ground Water & Sediment Monitoring Stations as per CIDCO Tender.	
igure 3.1: Ground Water Sampling in Progress	.12
igure 4.1 : Graphical representation of phytoplankton population and total genera for March 2016	
igure 4.2: Phytoplankton found in samples	30
igure 4.3: Graphical representations of Zooplankton Biomass, Population and total group for March 2016	31
igure 4.4: Benthic organism found in samples	. 31
igure 4.5: Graphical representation of benthic population for March 2016	31

1. INTRODUCTION

Mumbai Metropolitan Region (MMR) comprises of areas in and around Mumbai city and includes parts of Mumbai, Thane and Raigad Districts. Mumbai is known as the commercial capital of India and MMR is an industrial and technologically advanced region, which has experienced rapid growth in income and employment. The increasing trend in trading, business and financial services, demands highest order of infrastructure. There is need to enhance the capacity of airport as the existing airport in Mumbai experiencing tremendous pressure for meeting the air traffic demands of this vibrant region. Realizing the need of second airport for Mumbai, the Government of Maharashtra granted approval and appointed City & industrial Development Corporation of Maharashtra Limited (CIDCO) as Nodal agency for implementation.

The site for the airport was selected near Panvel in Raigad district of Maharashtra state with central coordinates 18°59'33.00"N and 73°4'18.00"E. The Director General of Civil Aviation (DGCA) has approved the site. Environmental Impact Assessment (EIA) study was conducted by Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (IIT) Mumbai and updated report submitted in April 2011. Environmental Clearance was granted by Ministry of Environment and Forests vide F. No. 10-53/2009- IA.III dt 22.11.2010.

Pre-development works for the site started in September 201<u>6</u>5 and as compliance to the Environmental clearance, CIDCO appointed Aditya Environmental Services Pvt. Ltd. (AESPL) to conduct Compliance Environmental Monitoring for the New Mumbai International Airport (NMIA) vide order no. CIDCO / T&C / CGM (T & A)/ STE (S-I& A)/2015/867 dated 28.05.2015. The assignment comprises monitoring of following parameters in and around the surrounding project area:

- Ambient air monitoring
- Ambient noise level monitoring
- Soil, ground/surface water
- Marine water and sediments for biological and physicochemical parameters.

The sampling locations fixed by CIDCO for compliance monitoring every quarter as per Tender No. CIDCO / T&C / NIMA / EC-22-11-2010/7.I.vii/xiii/xxx/010/251 dated. 16.02.2012 are as given in Chapter II.

2. SCOPE OF MONITORING WORK

2.1 Scope of Monitoring Work as per CIDCO Tender:

Scope of monitoring work as per CIDCO tender are as given below:

Table 2.1 Scope of Environmental Monitoring Work as per CIDCO Tender

Sr. No.	Parameters – as per Annexure B	Location	Frequency	Samples / Year
1.	Ambient Air Quality: PM 2.5, PM 10, SO ₂ , NO _x , CO, Lead, Ammonia, Hydrocarbon (nMHC).	12	2 Stations per Month, @ one sample per station	24
2.	Noise: Parameters: Leq Noise level - Day time & Night time separately.	12	Same as per Air Quality	24
3.			1 Sample at each station per 6 monthly periods. 10 x 1 x2 =20 samples per year	20
4.	Ground Water Quality Parameters: pH, Temperature, Turbidity, Alkalinity, Salinity, Total Nitrogen, Total Phosphorous, DO, BOD, COD, O&G, Residual Chlorine, Total Hardness, Chloride, TDS, Na, Fluorides (as F), NO ₃ , Mn, K, Fe, SO ₄ , Phenol, Hexa Chromium, Cu, Cd, As, Hg, Pb, Zn, Fecal Coliform (MF count/ml), Coliform Colonies, Phytoplankton, Total Heterotrophic Bacteria (spc/mL) & Chlorophyll.	10	5 Location per Month @ 1 Sample per location = 5 samples per month	60
5.	Marine/Surface Water Quality: Physico Chemical parameters: PH, Floating materials, Turbidity, Temperature, Salinity (ppt, %0), TSS, TDS, TOC, DO, BOD, O&G, SO ₄ , NO ₂ , NO ₃ , NH ₃ -N, Inorganic PO ₄ , Ca, Mg, Fe, Cr, Cu, As, Cd, Hg, Pb, Zn.	13	For 3 seasons No. of samples 26 samples per season 26 x 3 = 78 samples per year	78
6.	Marine/SurfaceWaterQuality:Biologicalparameters:Seasonalsampling& testing(SPC) of:Phytoplankton,Zooplankton,Macrofauna,Meiofauna,Microbiology,Benthos,DiversityIndices& Coliformcolonies(MPN)	3 (2 at Gadhi river entrance & 1 at Ulwe) River)	For 3 seasons. No. of Samples - 3x3 = 9 per year	9

2.2 Locations of Monitoring:

Sampling Locations have been specified by CIDCO in its Tender. The monitoring was carried out at the same locations as fixed by CIDCO. Details of monitoring stations for

Environmental Consultant	Dago 2	Aditya Environmental Services
	- Page 2 -	Pvt. Ltd.

Ambient Air Quality, Ambient Noise, Soil, Ground Water, Marine Water- physicochemical & biological and Sediment, and along with location maps showing station locations are as given below:

Table 2.2 Details of Ambient Air Quality Monitoring Stations as per CIDCO Tender

Station	Station	Remarks
Code		
A1	Panvel CIDCO Office	Location of meteorological station and in
		residential zone
A2	Khandeshwar Railway Station	Commercial activity center
A3	Kalamboli CIDCO Office	Receptor oriented as it is in residential zone
A4	Kharghar Nodal Office	Receptor oriented as it is in residential zone
A 5	Belapur CIDCO Bhavan	Major commercial activity center, heavy traffic
		movement
A6	Pargaon High School	Rural and mixed area
A7	Gavanphata Water Tank	Near to main traffic junction and hence heavy
		traffic movement
A8	Ambuja Cement Ltd	Industrial activity center
A9	Kille Gaothan Guest House	Receptor oriented as it is in residential zone
A10	Panchsheel Guest House	Receptor oriented as it is in residential zone
A11	Airport Entry – West	High vehicular movement at the entry / exit at
		the west side, near Aamra Marg
A12	Airport Entry – East	High vehicular movement at the entry / exit at
		the east side, near NH4B

Figure 2.1: Map of Ambient Air Quality Monitoring Stations as per CIDCO Tender

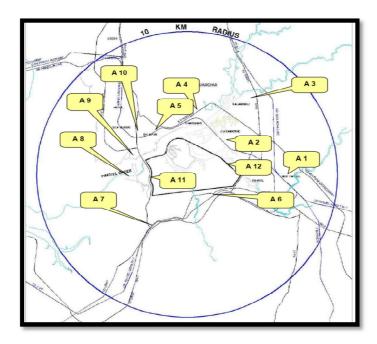


Table 2.3: Ambient Noise Level Monitoring Stations as per CIDCO Tender

Sr. No.	Station Name	Category of area
N1	Ambuja Cement Limited	Industrial area
N2	CIDCO Bhavan, CBD Belapur	Commercial area
N3	Palaspa Junction	Commercial area
N4	Teen Tank Gavanphata	Commercial area
N5	Panvel CIDCO Office	Residential Area (Mixed category)
N6	Kharghar Nodal Office	Residential Area
N7	Panchsheel Guest House	Residential Area
N8	Pargaon School	Sensitive area (Mixed category)
N9	MES School	Sensitive area (Mixed category)
N10	MGM Hospital, Kalamboli	Sensitive area (Mixed category)
N11	Swapna Nagri	Residential Area (Mixed category)
N12	Karnala Bird Sanctuary	Sensitive area

Figure 2.2: Map of Noise Level Monitoring Stations as per CIDCO Tender

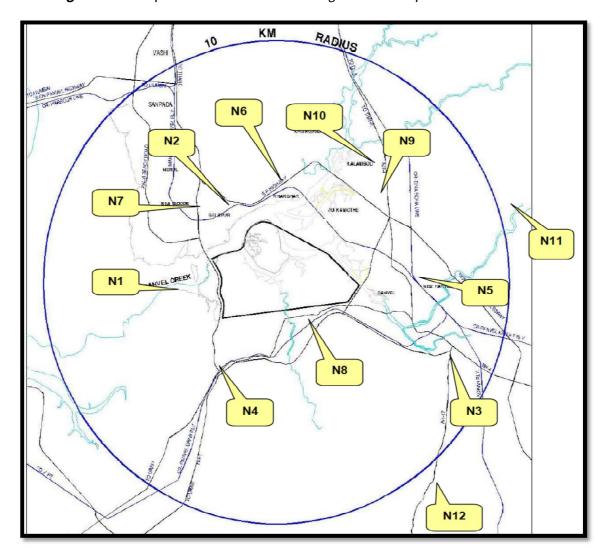


Table 2.4 Soil Quality Monitoring Stations as per CIDCO Tender

Station Code	Stations Name
S1	Targhar
S2	Kopar
S3	Kombadbhuje
S4	Koli
S5	Vaghivali
S6	Ganeshpuri
S7	Ulve
S8	Pargaon
S9	Vaghivalivada
S10	Chinchpada

Figure 2.3: Map of Soil Quality Monitoring Stations as per CIDCO Tender

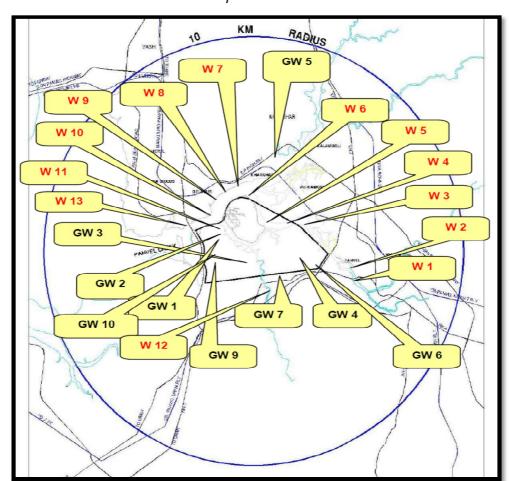


Table 2.5: <u>Details of Ground Water Quality Monitoring Stations as per CIDCO</u>
<u>Tender</u>

Station Code	Stations Name
GW1	Open well at Kombadbhuje
GW2	A well near pond at Ganeshpuri
GW3	Open well at Vaghivalivada
GW4	Open well at Koli
GW5	Open well at Kopar
GW6	Open well at Chinchpada
GW7	A well near pond at Pargaon
GW8	A well near pond at Vaghivali
GW9	Open well at Ulwe
GW10	A well near pond at Targhar

Table 2.6: <u>Details of Marine Water Quality Monitoring Stations as per CIDCO</u>
<u>Tender</u>

Station Code	Station details / Location
W1	Extreme end of Gadhi River (upstream side)
W2	Near Pargaon village (200m from W1) in Gadhi River
W3	Near Jui Village (300m from W2) in Gadhi River
W4	Near Kopar Khadi (300m from W3) in Gadhi River
W5	Near Vaghivali village (500m from W4) in Gadhi River
W6	Vaghivali creek junction (300m from W5) in Gadhi River
W7	Near Kharghar Rly Station (300m) in Gadhi River
W8	Near Belpada (300m from W7) in Gadhi River
W9	Near Konkan Bhavan (300m from W8) in Gadhi River
W10	Near Divala village (300m from W10) in Gadhi River
W11	At Junction of Ulwe and Gadhi Rivers in Panvel Creek
W12	In Ulwe River
W13	Near Rathi bander in Panvel Creek

Figure 2.4: Map of Surface Marine and Ground Water & Sediment Monitoring Stations as per CIDCO Tender

2.3 Period/Time of Sampling:

The sampling survey was carried out as per following schedule during the January to June 2016.

Table 2.7: Period/Time of Sampling for this Survey

Month	Parameter	Sampling	Dates of	Time Period
		Stations	Sampling	
January	AAQ	A11 & A12	29.01.16	24 hours starting from 1000am
2016	NLS	N3 & N12	29.01.16	24 hours starting from 1000am
	Soil	S4 & S2	30.01.16	Grab sample
	Ground Water	Gw1, GW2, GW8, GW9 &	30.01.16	Grab sample
		GW5		
February	AAQ	A1 & A3	27.02.16	24 hours starting from 1000am
2016	NLS	N5 & N10	30.02.16	24 hours starting from 1000am
	Soil	S8 & S10	26.02.16	Grab sample
	Ground Water	GW3, GW4, GW5, GW6 & GW7	26.02.16	Grab sample
March	AAQ	A4 & A5	30.03.16	24 hours starting from 1000am
2016	NLS	N2 & N6	30.03.16	24 hours starting from 1000am
	Soil	S3 & S7	31.03.16	Grab sample
	Ground Water	GW1, GW2,	31.03.16	Grab sample
		GW8, GW9 &		·
		GW10		
	Marine Water	W1, W2, W3,	30-31.03.16	Grab sample
		W4, W5, W6,		
		W7, W8, W9,		
		W10, W11,		
		W12 & W13		
April 2016	AAQ	A2 & A6	27.04.16	24 hours starting from 1000am
	NLS	N9 & N8	27.04.16	24 hours starting from 1000am
	Soil	S2 & S4	27.04.16	Grab sample
	Ground Water	GW3, GW4,	27.04.16	Grab sample
		GW5, GW6 & GW7		
May 2016	AAQ	A9 & A10	23.05.16	24 hours starting from 1000am
	NLS	N7 & N11	23.05.16	24 hours starting from 1000am
	Soil	S5 & S9	24.05.16	Grab sample
	Ground Water	GW1, GW2,	23.05.16	Grab sample
		GW8, GW9 & GW10		
June 2016	AAQ	A7 & A9	27.06.16	24 hours starting from 1000am

Month	Parameter	Sampling	Dates of	Time Period
		Stations	Sampling	
	NLS	N1 & N4	27.06.16	24 hours starting from 1000am
	Soil	S2 & S4	28.06.16	Grab sample
	Ground Water	GW3, GW4,	28.06.16	Grab sample
		GW5, GW6 &		
		GW7		

As per the Tender Conditions Marine & surface water physico- chemical sampling was required to be done for 3 stations per quarter @ 2 samples per station – 13 stations to be accommodated in one of the quarter- total 78 samples as also Marine Biological/sediment Analysis was required to be done at 9 locations per year. This would have meant to cover totally different 3 locations every quarter – which would not have given any meaningful interpretation.

AESPL therefore approached CIDCO vide its email dt 10.10.2015 requesting for covering all 13 sample locations in each quarter at two samples per location- i.e. 26 samples totally. Thus over 3 quarters, total 78 samples will be covered. CIDCO has vide its email dt 05.11.2015 clarified that they are acceptable to revised work plan. Hence, AESPL team collected samples at 13 locations from 30-31 March 2016.

2.4 Constraints in completing Environmental Baseline Monitoring as per CIDCO Tender:

➤ Sediment samples at locations W2, W7 and W11 could not be collected due to rocky substratum.

3. METHODOLOGY ADOPTED FOR ENVIRONMENTAL MONITORING

3.1 AMBIENT AIR QUALITY

3.1.1 Reconnaissance Survey:

Reconnaissance survey in study area (10km around proposed airport site) shows that sources of air pollution include the following:

- heavy traffic along Amara Marg, NH4B and Uran / JNPT Road
- construction activity
- industries in Panvel industrial estate (private)
- burning of poor quality fuels in villages within proposed site and nearby

In order to arrest the deterioration in air quality, Govt. of India has enacted Air (Prevention and Control of Pollution) Act in 1981. The responsibility has been further emphasized under Environment (Protection) Act, 1986. Therefore, Central Pollution Control Board had published guideline for measurement of Ambient Air Pollutants Quality Monitoring (NAAQM) in November 2009 at national level.

3.1.2 Methodology for Ambient Air Quality Monitoring:

To monitor Air Pollutants in Ambient air following method of analysis adopted

SN	Parameter	Sampling Equipment	Method of Analysis	Reference
1.	PM ₁₀	RSPM Sampler/ Glass Fiber filter paper.	Gravimetric analysis	CPCB Guidelines Manual 2011
2.	PM _{2.5}	PM _{2.5} Sampler/Filter – PTFE, Teflon membrane	Gravimetric analysis	CPCB Guidelines Manual 2011
3.	SO ₂	Absorption in TCM	West & Gaeke Method	CPCB Guidelines Manual 2011
4.	NO _X	Absorption in NaOH	Jacob – Hochheiser (Sodium Arsenic)	CPCB Guidelines Manual 2011
5.	СО	Sampling in Tedler bags / CO Meter	GC with Methaniser	CPCB Guidelines Manual 2011
6.	Lead	Sampling using EPM 2000 equivalent Glass Fiber Filter paper	AAS Method	CPCB Guidelines Manual 2011
7.	NH ₃	Absorption in sulfuric acid	Indophenol Method	CPCB Guidelines Manual 2011
8.	nMHC	Collection Activated Carbon	Gas Chromatography	APHA

3.1.3 SELECTION OF AIR SAMPLING LOCATION

Selection of representative location is very important. Following precautions to be taken:

- It should be away from source & other interferences
- Install sampler at free flowing well mixed area (3m) above ground level
- Install Pre Calibrated Air Samplers with pre weighted Filter papers
- Transport the samples to reach earliest at laboratory for further analysis
- Gaseous Samples were preserved in cold box before taking to laboratory

3.2 AMBIENT NOISE LEVEL

3.2.1 Reconnaissance Survey:

Reconnaissance survey in study area (10km around proposed airport site) shows that sources of air pollution include the following:

- heavy traffic along Amara Marg, NH4B and Uran/JNPT Road
- construction activity
- industries in Panvel industrial estate (private)
- noise from human habitats/villages within proposed site and nearby

Noise pollution in urban areas is now being recognized as a major environmental issue around the world. With increasing awareness of the adverse impacts of noise on human health, more and more people becoming less tolerant to environmental noise. The objective of this exercise is to assess the baseline status within study area and to compare the noise levels with Ambient Noise Standards for the area.

3.2.2 Methodology for Sample Collection

Integrated Sound Level Meter C390 was used for undertaking the surveys and installed on tripods at the selected locations over a 24-hour period. This Meter is then taken to laboratory where the data collected is downloaded onto PC using specialized software.

Noise is measured in decibel (dB) and 'A' weighting is used for this entire monitoring since in this method of frequency weighting, the signal generated reproduces the way the human ear responds to a range of acoustic frequencies. Leq:

Center C-390 Sound level Meter with data logger

The equivalent continuous Sound Pressure Level for a particular duration. The Day-Night Equivalent Sound Level refers to average sound exposure over a 24- hour period. Leq day & night values are calculated from hourly Leq values, with the Leq values for the night time increased by 10 dB to reflect the greater disturbance potential from night time noises.

3.3 Soil

The purpose of soil testing is to identify the soil fertility that the plants or crop, in a given area will experience.

3.3.1 Reconnaissance Survey:

The study area is rural in character and large tracts are being cultivated as paddy fields. Soil is also seen plentifully at bottom of hills where it supports large vegetation.

3.3.2 Methodology of Sample Collection:

Soil samples are collected after removing top two inches – which may contain high amount of organic carbon and humus. The soil area and volume could be a large field, a small garden, or simply the root zone of a single tree or shrub. The most difficult step in soil testing is accurately representing the desired area of soil. When the sampling area is determined, a sufficient number of soil cores taken to acquire a representative sample. This is generally 10 to 20 cores. The depth of sample for surface soils was taken from 0 to 6 inches or as deep as the primary tillage.

Soil samples collected from proposed project stations by using stainless steel soil sampling probe, packed in labeled polythene bags & send for analyze the physicochemical characteristics. The sample so collected is then made representative by coning- quartering and then stored in plastic bags, sealed and then sent to laboratory for analysis.

3.4 GROUND WATER SAMPLING

3.4.1 Reconnaissance Survey:

The villages in study area use ground water from open/bore well and use it for drinking and other domestic purposes. Ground water gets contaminated due to bad sanitary habits such as

washing of utensils, cattle and bathing and location of septic tanks in/near the open wells.

3.3.2 Methodology of Sampling:

Ground water sample is collected by using containers and the sampling container is rinsed before using it for storing water samples. Ground water samples are stored in two separate containers for Physicochemical & Microbiological analysis and preservatives added as recommended by Standard Methods APHA, stored in cold storage box and transferred to the laboratory for the further analysis.

Figure 3.1: Ground Water Sampling in Progress

3.5 MARINE WATER, SEDIMENTS & PLANKTON SAMPLING EQUIPMENTS

3.5.1 Reconnaissance Survey:

The study area represents complex hydrodynamic system. The Ulwe river flows down through the mountains (to the south) in the centre of project site and joins the Panvel creek. The Gadhi river flows from the East to the West. The Ulwe river will be diverted/retrained as part of the project and the Gadhi river will be partly retrained towards the northern part of the site. The river Gadhi receives sewage from Panvel town and nearby areas. Both the rivers drain into the Panvel creek which drains into the Arabian sea to the west. The Panvel creek also received treated effluents from CETP at MIDC Taloja and sewage from NMMC STPs in Nerul.

3.5.2 Methodology of Sampling:

3.5.2.1 Niskin Bottle - Marine Water Sampler

This Water Sampler is used to collect samples at various water depths and can operate at any depth on a cable or line with a messenger.

3.5.2.2 Plankton Net - Biological Samples

This plankton net operates a cable or lined by hand or behind a boat, it can be towed vertically or horizontally. Nets comes in varieties of size (Mesh no 00 equal an aperture of 0.30 inches)

3.5.2.3 Grab Sampler - For Marine Sediments

Sediment grab operate at any depth on a cable or line by free fall (without a messenger). It is extremely heavy and can take samples of hardest rocky ocean bottoms.

Grab Sampler

3.5.2.4 Selection of Stations, Preservation and Transportation of Samples:

Marine samples were collected from sampling locations in Gadhi River, Ulwe River and Panvel Creek at the locations indicated by CIDCO – in all 26 samples were collected from 13 sampling locations for physicochemical samples (Stations 1 to 10 are located in Gadhi River & Station 11 & 13 are in Panvel Creek while station 12 in Ulwe River), while 3 samples were collected 1 from Ulwe river and 2 at entrance of Gadhi rivers for biological samples. A good amount of mangrove vegetation was noted on either side of stream from station 4 to 6. Sampling locations were approached by boat (wherever possible) and collection done irrespective of tide. Depending of water depth at sampling location during sampling, both (surface and bottom) samples were collected. The samples were preserved and taken to laboratory using vehicle on same day.

Zooplankton sampling in progress

Marine water sampling in progress

noting sampling coordinates by GPS

Zooplankton sampling in progress

General arrangement onboard

Sediment sampling in progress

Sampling team onboard

3.6 Laboratory Credentials

Sampling and analysis was done by laboratory of Aditya Environmental Services Pvt Ltd located at Plot P-1, MIDC Commercial plots, Mohopada, Tal Panvel, Dist Raigad.

- Our Environmental Laboratory is recognized by Ministry of Environment & Forest (MoEFCC), Govt. of India under Environment (Protection) Act, 1986
- Environmental sampling conducted by our experienced, qualified environmental staff & Analysis and reporting by approved Government Analyst.
- Instruments used for sampling are from reputed manufacturer & are regularly calibrated.
- Chemicals used will be Analytical Reagent grade and from reputed manufacturer.
- Analytical Instrumentation used in the laboratory is regularly calibrated.
- We have regular program of Preventive Maintenance & Annual Maintenance for all critical equipment's.
- Ground Water, Soil Analysis using APHA, BIS, ASTM & CPCB standards Methods for water Analysis.
- Standard Methods Adopted in the laboratory are those prescribed by APHA, BIS, ASTM & CPCB for water, waste & marine water analysis using methods as per NIO (National Institute of Oceanography) Manual
- We have CRMs (Certified Reference Material) for heavy metals from reputed manufacturers for heavy metals and Standard sea water which we use for analysis
- We are regularly participating in Proficiency testing with reputed Organizations like Central Pollution Control Board (CPCB), Goa State Pollution Control Board and others as also Intra laboratory QC testing to check performance of our chemists
- Overall approach & methodology is with Annexure IA Scope of the work & the Best practices as per prevailing norms of Central Pollution Board /Ministry of Environment & Forest etc /Internationally adopted practices.

4. COMPILATION OF DATA & INFERENCE

4.1 AMBIENT AIR QUALITY MONITORING REPORT

4.1.1 AAQM DATA

Ambient Air quality was monitored with relevant parameters as per NAAQS standards published by CPCB in November 2009 considering that the present project is for development of International Airport for Navi Mumbai area. Data is compiled and presented below:

Table 4.1: Ambient air quality monitoring of various stations of project area during January to June 2016

Sampling Locations	Airport Entry – West (A11)	Airport Entry – East (A12)	Panvel CIDCO Office (A1)	Kalmboli CIDCO Office (A3)	Kharghar CIDCO Office (A4)	CBD CIDCO Office (A5)	Pargaon High School (A6)	Near Khandeshwar Rly. Station (A2)	Kille Goathan Guest House (A9)	Panchseel Guest House (A10)	Gavanphata Water Tank (A7)	Amuja Cement Ltd. (A8)	Limit #	Unit
Sampling Date	29.01	.2016	27.0	2.2016	30.03.2	2016	27.	04.2016	23.0	05.16	27.06.	16		
PM _{2.5}	41.2	42.9	41.2	42.9	45.2	42.7	40.8	42.1	43.6	43.7	42.5	36.3	60	μg/m³
PM ₁₀	61.2	55.4	62.9	54.4	67.4	54.8	58.7	59.2	72.9	68.7	64.6	60.8	100	μg/m³
SO ₂	11.3	11.1	11.7	11.9	10.1	10.5	13.4	13.8	12.3	12.3	13.2	12.4	80	μg/m³
NO _X	10.2	9.8	12.9	12.9	15.5	14.8	11.8	11.1	12.4	12.7	14.0	13.5	80	μg/m³
СО	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.1	0.2	0.2	4	mg/ m³
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	μg/m³
NH ₃	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	400	μg/m³
NMHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	MD	0.24	ppm

ND – Not detected. (Note # Limits as per National Ambient Air Quality Standards (NAAQS), 2009)

4.1.2 INFERENCE OF AAQM DATA

The concentration of Particulate Matter – 10 μ (PM10) matter was observed above 50 μ g/m³ at all sampling locations in this period. The level of Particulate Matter - 2.5 μ (PM 2.5) was observed under NAAQS limit. Amongst gaseous pollutant, Nitrogen Oxide level, Sulfur dioxide levels and Carbon monoxide are under NAAQS limit. Concentration of Lead, Ammonia and NMHC was not detected during the survey period. Over all air pollutants level was observed below NAAQS standards.

4.2 AMBIENT NOISE LEVEL MONITORING REPORT

4.2.1 Noise Level Data

Ambient Noise level was monitored over 24 hours' duration for Day and Night time as per Schedule - II of Environmental Protection Act 1986. Results of analysis are compiled below:

Table 4.2: Ambient noise level monitoring of various stations of project area during January to June 2016.

Stn	Sampling Location	Sampling	Ok	serve	d Value	e (Leq)	(dB(A))	Limiting	
Code		Date	Day Ti	me		Night	Time		Standard as per EF Schedule dB(A)	P Act
			Max	Min	Avg	Max	Min	Avg	Day Time	Night Time
N3	Palaspa Junction	29.01.16	95.6	42.6	50.7	64.9	37.1	48.8	75	70
N12	Karnala Bird Sanctuary	29.01.10	52.6	38.9	47.8	50.9	34.6	38.6	75	70
N5	Panvel CIDCO Office	30.02.16	94.1	51.6	37.9	82.5	59.1	67.9	75	70
N10	Kalamboli CIDCO Office	30.02.10	73.5	43.6	54.3	80.7	45.1	52.4	75	70
N6	Kharghar CIDCO Office	30.03.16	83.9	51.0	69.9	85.6	54.1	71.2	75	70
N2	CBD CIDCO Office		116.5	31.0	64.8	85.0	28.6	34.1	75	70
N9	MES School	27.04.16	69.6	46.1	52.8	65.8	40.9	47.6	75	70
N8	Paragaon High School		73.7	47.0	55.2	79.4	42.0	51.1	75	70
N11	Swapna Nagri		86.8	44.1	66.6	75.0	49.6	54.1	75	70
N7	Panchsheel Guest House	23.05.16	86.5	34.0	58.7	70.7	36.0	55.1	75	70
N1	Ambuja Cement Ltd.		84.3	27.3	44.2	72.7	26.5	32.8	75	70
N4	Teen Tank Gavanphata	27.06.16	81.3	39.3	50.4	60.4	33.7	39.3	75	70

4.2.2 Inference of Noise Data

During day time, the average noise level was observed in the range of 37.9-69.9 dB(A) & during Night time 32.8-71.2 dB(A) at all locations during sampling period. The noise level for day / night time was observed high at Kharghar CIDCO office area due to heavy transportation of commercial vehicles. It is observed sound level are below EP Act Standards at all stations during day time. Sound level is high only at Kharghar CIDCO Office during night time as EP Act standards.

4.3 SOIL QUALITY MONITORING REPORT

4.3.1 Soil Analysis Data

Data on soil analysis is compiled and presented below for the sampling period:

Table 4.3: Soil analysis of various stations of project area during January to June 2016

Sr. No.	Locations	Koli (S4)	Kopar (S2)	Paragaon (S8)	Chinchpada (S10)	Kombadbhuje (\$3)	Ulwe (S7)	Koli (S4)	Kopar (S2)	Vaghivali (S5)	Vaghivalivada (\$9)	Kopar (S2)	Koli (S4)	Unit
	Sampling Date	30.01	.2016	26.0	2.2016	31.03.201	6		27.04.2016		24.05.16	28.06	5.16	Offic
1.	рН	7.42	7.14	7.24	6.82	6.42	6.42	6.31	6.42	6.28	6.32	6.42	6.31	
2.	TOC	8.0	2.5	1.2	2.4	2.4	1.8	2.2	1.4	1.8	2.1	1.4	2.2	%
3.	TKN	28	28	5.6	2.8	8.6	5.6	5.6	2.8	5.6	5.6	2.8	5.6	mg/kg
4.	Conductivity	179.9	191.6	128.1	132.0	162.1	130.7	153.1	142.0	152.4	138.5	142.0	153.1	μS/cm
5.	Calcium	184	240	114	96	64	82	64	94	58	82	94	64	mg/kg
6.	Magnesium	82	38	62	18	43	35.4	43	36	46	38	36	43	mg/kg
7.	Sulphate	230	150	44	62	160	284	178	234	120	202	234	178	mg/kg
8.	Chlorides	52	71	72	59	82	46	92	52	96	52	52	92	mg/kg
9.	Sodium	18	8	18	24	ND	ND	ND	ND	ND	ND	4	8	mg/kg
10.	Potassium	20	26	24	104	ND	ND	ND	ND	ND	ND	112	123	mg/kg
11.	Phosphates	39	8.7	0.8	ND	1.1	2.0	ND	1.1	ND	0.8	ND	ND	mg/kg
12.	Iron	2.7	3.6	ND	ND	1.2	2.3	1.2	2.1	1.1	1.1	2.1	1.2	mg/kg
13.	Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
14.	Copper	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
15.	Nickel	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
16.	Zinc	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
17.	Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
18.	Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
19.	Manganese	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
20.	Aluminum	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
21.	Cobalt	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
22.	Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
23.	Arsenic	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg

ND - Not Detected

4.3.2 Soil Data Inference:

There was marginal high level (Na, K & Fe) of heavy metals observed (at Koli, Kopar, Chinchpada & Pargaon). This may be due to previous landfilling activity by CIDCO at these sites. Over all soil quality was observed fertile in nature and suitable to grow local plants varieties at all locations.

4.4 GROUND WATER QUALITY ANALYSIS REPORT

4.4.1 GW Analysis Data

The physicochemical analysis of ground water study showed considerable variation and is compiled and presented below:

Table 4.4: Ground water analysis of various stations of project area during January to June 2016

	Sampling Locations	(Koli GW 4			Copai GW 5			raga GW 7			nchp GW 6		1	ghiw wada GW 3	1		Ulwe GW 9			eshp GW 2			ghiv GW 8			argha SW 1			nbad e GW 1	
	Sampling month	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May
1	pН	6.93	6.72	7.58	6.72	6.68	7.81	6.78	6.56	7.75	6.87	6.81	7.18	6.92	6.88	7.44	6.67	6.38	6.33	6.92	6.74	6.65	7.70	7.37	7.35	7.68	7.25	7.03	9.62	7.34	7.01
2	Temperature,° C	27.9	28.1	28.0	28.1	28.9	28.0	27.9	28.3	28.0	28.2	28.0	28.0	28.0	28.2	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	29.0	28.0	28.0	28.0	28.0	28.0	29.0	28.0
3	Turbidity, NTU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Alkalinity	64	66	60	70	68	72	40	70	50	72	74	78	46	48	48	182	188	176	154	160	110	118	136	110	148	178	156	172	188	164
5	Salinity, ppt	1.5	1.6	1.2	0.85	1.4	0.98	1.3	1.2	1.3	1.3	1.2	1.3	1.1	1.2	1.5	1.8	1.1	1.1	1.2	0.64	0.6	2.10	1.3	1.4	1.6	1.2	0.6	2.4	3.2	0.4
6	TKN	95	5.7	98	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	23.8	ND	1.12	5.6	2.5	2.8	2.8	2.2	89.6	2.8	2.8	8.6	4.48	10.9	7.6	5.6	7.3
7	Total P	2.8	2.6	2.1	2.4	2.2	1.95	2.3	2.0	1.8	2.1	2.2	2.0	1.8	1.6	2.5	3.0	1.1	ND	5.8	1.1	ND	2.3	2.1	ND	3.2	2.4	ND	2.1	1.2	ND
	DO	6.0	6.0	5.7	5.7	5.6	6.0	5.8	5.0	5.8	4.9	5.0	5.2	5.9	5.9	5.8	5.8	5.9	5.4	5.9	5.2	4.8	5.2	5.6	5.4	5.6	5.6	5.1	5.2	6.2	4.6
	BOD	22	20	8	16	14	4	8	4	14	4	4	8	12	10	2	10	12	10	10	16	8	28	8	6	20	12	10	8	14	8
	COD	60	80	29	40	40	19	30	20	48	20	20	29	40	40	10	30	38	50	30	38	30	57	28	30	62	38	30	30	38	30
11	Oil & Grease	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Residual Free Chlorine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Hardness (as CaCO₃)	26	24	32	132	134	112	144	154	158	152	154	144	148	146	130	124	186	124	180	178	170	208	184	180	182	192	178	262	260	220
	Chlorides(as CI)	65	65	70	63	64	65	70	72	62	74	72	76	61	63	72	34	52	37	48	64	44	264	91	315	190	46	45	88	68	59
15	TDS	120	140	150	110	120	130	120	120	130	130	140	120	100	90	120	110	210	130	120	160	120	460	220	410	310	140	110	220	130	120
16	Na	52.3	ND	ND	27	ND	ND	44	8	ND	57	ND	ND	12	8	ND	34	12	ND	21	ND	ND	22	ND	ND	28	12	ND	18	10	ND
17	Fluoride (as F)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	ND	ND	0.21	ND	ND	0.13	ND	ND	ND	ND	ND	ND	ND	ND
18	Nitrate	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	4	6	ND	34	1.1	1.7	1.0	ND	1.9	2	ND	1.9	1.0	ND	1.2	ND	4.0	4.0

	Sampling Locations	(Koli GW 4			Copa GW 5			raga GW 7			nchp GW 6		,	ghiw wada GW 3	1		Ulwe GW 9			eshp GW 2			ghiv GW 8			argha GW 1			nbad e GW 1	lbhuj 1)
	Sampling month	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May
19	Mn	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	К	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Iron (as Fe)	0.10	0.01	0.15	0.06	0.05	0.08	0.12	0.17	0.13	0.18	0.01	0.11	0.11	0.01	0.09	0.19	0.04	0.03	0.06	0.01	0.04	0.21	0.04	0.09	0.16	0.2	0.04	0.2	0.04	0.03
22	Sulphate	18	16	48	29	30	49	28	22	53	24	21.8	38	29	28	31	26	26	24	28	34	20	28	32	26	21	ND	25	28	28	22
23	Phenol	ND	ND	ND	ND	ND	ND	0.3	ND	ND	0.06	MD	ND	0.42	ND	ND	ND	ND	ND	ND	ND	ND	0.22	ND	ND	ND	ND	ND	ND	ND	ND
	Hexavalent Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25	Cu	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	Cd	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	As	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	Hg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	Pb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30	Zn	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31	Fecal Coliform	70	230	300	23	430	280	140	240 0	240	110	430	130	80	240 0	140	<2	<3	<3	<2	<3	<3	30	92	30	<2	<3	<3	<2	<3	<3
37	Coliform Colonies	Present	Absent	Present	Absent	Absent	Present	Present	Present	Present	Present	Absent	Present	Present	Present	Present	Present	Present	Present	Present	Present	Present	Present	Absent	Absent	Present	Present	Present	Present	Present	Present

Environmental Consultant

Aditya Environmental Services
Pvt. Ltd.

Environmental Compliance Monitoring Report for Navi Mumbai International Airport (NMIA) (Jan – Jun 2016)

			Koli GW 4			Copa GW 5			raga GW 7			nchp GW 6		١	ghiw wada GW 3	1		Ulwe SW 9		Gan	eshp GW 2			ghiv GW 8			argha SW 1	ar		nbadl e GW 1	
	month		Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Feb	Apr	Jun	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May	Jan	Mar	May
33	Phytoplankton (no x 10 ³ /L)	ND	ND	ND	ND	17.2	17.0	15.0	20.2	20.0	ND	7.6	7.2	6.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
34	Total Hetrotrophic Bacteria (spc/ml)	70	98	105	85	105	112	90	110	120	82	95	95	95	108	102	95	90	100	88	80	86	100	105	100	105	100	102	98	102	80
3	Chlorophyll (mg/m³)	ND	ND	ND	ND	11.6	10.3	16.0	18.7	18.2	ND	5.3	5.1	5.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All physicochemical parameters are expressed in mg/L except pH, Temperature (° C), Turbidity (NTU) and Salinity (%)

ND – Not detected

4.4.2 GW Analysis Inference:

The ground water quality showed considerable variation. Some ground water parameters were within desirable limit, some between desirable and permissible limit and few exceeded the permissible limit. The ground water did not fully comply the quality requirements as per IS 10500 revised in 2012 for purpose of drinking water.

The quality of collected ground water was not suitable for drinking purpose due to the presence of Fecal coliform, E. coli colonies & heterotrophic bacteria at all locations i.e. Koli, Kopar, Pargaon, Chinchpada, Vaghiwaliwada, Ulwe, Ganeshpuri, Vaghivali, Targhar & Kombadbhuje.

4.5 MARINE WATER QUALITY ANALYSIS REPORT (PHYSICOCHEMICAL PARAMETERS)

4.5.1 Analytical Data - Physicochemical Parameters:

Table 4.5: Marine water physicochemical analysis of various stations of project area during March 2016

Sr.		W 1	W 2	W 3	W 4	V	/ 5	V	16	V	1 7	V	/8
No	Parameter	S	S	S	S	S	В	S	В	S	В	S	В
1.	рН	6.94	7.12	7.12	6.89	6.91	6.80	7.17	7.24	7.2	7.16	7.23	6.89
2.	Floating Matter	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
3.	Turbidity, NTU	ND	ND	ND	ND	ND	ND	ND	3.9	12.3	12.4	ND	ND
4.	Temperatur e, ° C	28.0	28.0	28.0	28.0	28.0	28.0	28.0	27.0	27.8	28.2	28.0	28.1
5.	Salinity, ppt	2.8	3.5	8.2	12.4	11.1	12.2	12.3	13.4	12.4	12.4	13.2	13.2
6.	TSS	120	120	202	142	356	261	238	318	302	303	62	84
7.	TDS	203 0	121 0	236 0	281 0	264 0	136 0	304 0	354 0	221 0	338 0	3235 5	3370 0
8.	TOC	1.2	1.6	1.8	1.6	1.8	2.1	1.9	2.2	2.2	2.4	1.4	ND
9.	DO	5.2	5.4	5.4	5.3	5.2	4.2	5.8	5.6	4.5	5.2	5.2	4.9
10.	BOD	12	36	26	12	14	10	10	16	14	16	22	20
11.	O&G	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12.	Sulphate	21.4	11.0	32.0	14.0	11.4	18.9	25.0	16.0	30.0	30.0	32	22
13.	Nitrite	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14.	Nitrate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15.	TAN	8.4	2.8	2.8	14.0	2.9	3.9	12.4	11.4	6.8	6.8	2.8	2.8
16.	Inorganic PO ₄	2.1	2.0	ND	ND	7.2	2.2	1.3	ND	ND	ND	ND	ND

Sr.		W 1	W 2	W 3	W 4	V	/ 5	V	<i>l</i> 6	V	17	V	/ 8
No	Parameter	S	S	S	S	S	В	S	В	S	В	S	В
17.	Ca	108	234	810	148	37.6	52.0	88	43	59	47.2	56	48
18.	Mg	20.4	42	69	84	98.2	11.8	32	47	20.4	20.9	35	10.9
19.	Fe	0.04	ND	ND	0.05	0.04	0.06	0.02	0.03	0.03	0.05	0.03	0.02
20.	Cr	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21.	Cu	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22.	As	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23.	Cd	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24.	Hg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25.	Pb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26.	Zn	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All parameters are expressed in mg/L except pH, Turbidity (NTU), Temperature (° C) and Salinity (%)

ND- Not Detected

Table 4.6: Marine water physicochemical analysis of various stations of project area during March 2016 **continued**....

Sr.	Parameter	V	19	W	10	W	11	W 12	W	13
No.	Parameter	S	В	S	В	S	В	S	S	В
1.	рН	6.78	6.76	6.12	6.97	6.87	7.02	7.12	7.12	7.24
2.	Floating Matter	Absent								
3.	Turbidity, NTU	3.4	3.4	7.12	6.8	6.4	19.2	ND	6.8	12.5
4.	Temperature, ° C	28.1	28.2	27.9	28.3	28.1	27.5	28.3	28.3	28.1
5.	Salinity, ppt	13.6	13.4	12.2	12.4	12.3	12.5	6.1	12.4	12.1
6.	TSS	129	171	167	145	314	381	191	377	376
7.	TDS	3390	3480	3810	3180	3210	3100	3210	3120	3150
8.	TOC	1.8	2.0	1.9	2.1	1.8	1.7	3.8	ND	2.2
9.	DO	5.2	5.4	5.0	5.2	5.2	5.6	5.8	5.5	5.0
10.	BOD	18	18	14	18	24	30	26	20	24
11.	O&G	ND								
12.	Sulphate	16.0	11.0	14.0	19.5	35.0	34.0	30.0	32.1	30.4
13.	Nitrite	ND								
14.	Nitrate	ND								
15.	TAN	8.2	6.4	14.5	6.7	7.5	8.4	4.7	2.24	2.3
16.	Inorganic PO ₄	1.2	1.4	ND	ND	ND	ND	4.4	ND	ND

Sr.	Darameter	W	19	W	10	W	11	W 12	W	13
No.	Parameter	S	В	S	В	S	В	S	S	В
17.	Ca	37.6	56.8	53.6	59.2	49.6	48.8	42.4	40.0	44.8
18.	Mg	12.8	11.4	10.9	11.4	10.6	11.8	73.4	11.5	12.4
19.	Fe	0.04	0.07	0.07	0.08	0.06	0.05	0.08	0.03	0.03
20.	Cr	ND								
21.	Cu	ND								
22.	As	ND								
23.	Cd	ND								
24.	Hg	ND								
25.	Pb	ND								
26.	Zn	ND								

All parameters are expressed in mg/L except pH, Turbidity (NTU), Temperature (° C) and Salinity (%)

ND – Not Detected

4.5.2 Inference - Physicochemical Parameters:

The pH value ranged from 6.12 to 7.23 at surface and 6.76 to 7.24 at bottom suggest the slightly acidic to basic nature of water. Salinity was low due to influx of fresh water. The high total suspended solids were found at bottom of water at station 11 due to accumulation of discharge from surrounding villages in the Panvel Creek.

The Total dissolved solids were noted high which suggest the high concentration of dissolved salts and deteriorated quality of water. Total organic carbon was noted low which suggest there were no accumulation of organic matter in water body.

Dissolve Oxygen level within normal limit suggest good amount of dissolved oxygen in the water body to support living organism. BOD value suggest the presence of biodegradable organic wastes present in water body which comes as domestic waste and discharge of sewage from surrounding areas.

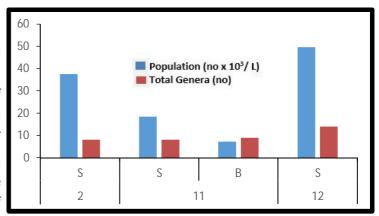
The Sulphate value were found in low concentration which represents anthropogenic contamination. Total ammonical nitrogen were low in water body. Inorganic phosphate was found in low concentration. The concentration of Calcium, Manganese and Iron were low due natural origin. Other toxic metals (Cr, Cu, As, Cd, Hg, Pb and Zn) not detected at all stations.

4.6 MARINE WATER QUALITY ANALYSIS REPORT (BIOLOGICAL PARAMETERS)

4.6.1 Analytical Data - Biological Parameters:

Biological parameters viz. Phytoplankton, Zooplankton, Benthos and Microbiology were analyzed and compiled data is presented below:

Table 4.7: Marine water biological analysis of various stations of project area during March 2016


D	W 2	W.	W12		
Parameter	S	S	В	S	
	Phy	toplankton			
Population(nox103/L)	37.6	18.4	7.2	49.6	
Total Genera	8	8	9	14	
Major Genera	Thalassiosira Skeletonema Trichodesmium Peridinium	Thalassiosira, Guinardia Plerurosigma Coscinodiscus	Gyrosigma Thalassiosira Navicula Coscinodiscus	Guinardia Thalassiosira Navicula Coscinodiscus	
Diversity Index	1.2	1.4	2.1	2.2	
Zooplankton					
Population (no x 103/100m3)	22	30)	16	
Total Group	9	1	1	11	
Major Groups		Copepod, Deca	pods larvae		
Biomass (ml/100m ³)	2.08	4.2	21	1.17	
Diversity Index	0.046	0.0	65	0.66	
Benthos					
Population	Sample could Not	Sample	could	2.5	

Domonoton	W 2	W ²	11	W12
Parameter	S	S	В	S
(no x 10 ² /m ²)	be collected due	Not be co	ollected	
Total Group	rocky substratum	due rocky s	ubstratum	2
Major group				Polychaete Amphipods
Biomass (gm/ m ²)				0.55
Diversity Index				0.693
	Mic	crobiology		
Coliform/100 ml	Absent	Absent	Absent	Present
E. coli	Absent	Absent	Absent	Absent

4.6.1 Inferences - Biological Parameters:

4.6.1.1 Phytoplankton

In March 2016, Phytoplankton population density ranges from 18.4-49.6 x 10³/l at surface of stations 2, 11 and 12; population was noted 7.2 x 10³/l at bottom of Station 11. Highest phytoplankton population at station 12 in Ulwe River may be due to influx of

domestic water from surrounding villages; total generic groups ranges from 8-14 nos. in

March 2016 at surface and 9 genera observed at bottom of station 11. Maximum generic

Figure 4.1 : Graphical representation of phytoplankton population and total genera for March 2016

diversity observed at station 12 in Ulwe River.

Thalassiosira, Navicula are most common ones, followed by rest of observed genera like Skeletonema, Coscinodiscus. Thalassiosira, Skeletonema, Trichodesmium and Peridinum are major genera in Gadhi River.

The other fresh water phytoplankton genera found are *Phacus* and *Cymbella* (Solitary) in Ulwe River (Station 12). *Thalassiosira* and *Coscinodiscus* are common Genera noted in all stations 2, 11 and 12 mostly present in surface water. Graphical representations of phytoplankton population and total genera is represented in Figure 4.1.

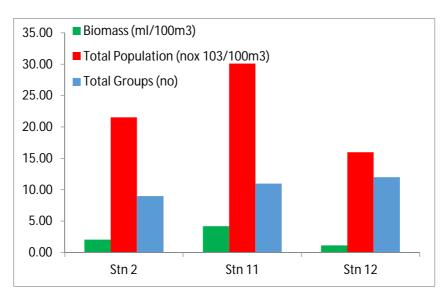
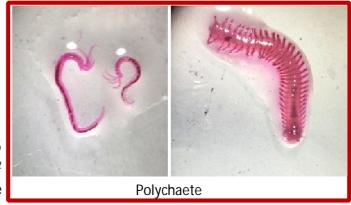

The above graph represents population the phytoplankton is more at station 12 in Ulwe River and station 2 at Gadhi River. which represents there is discharge of sewage and domestic waste is more. While at station 11 is near to creek, Panvel where phytoplankton population is phytoplankton less. The trend with respect to total number of genera is almost same throughout stations. Some of the major seen were genera photographed and shown in figure 4.2.

Figure 4.2: Phytoplankton found in samples

4.6.1.2 Zooplankton

In March 2016, the zooplankton biomass ranged from 1.17 -4.21 ml/100 m³ with population density of 16-30 nox10³/100m³ while having low faunal group ranging from 9-11 nos. The zooplankton were noted with high population and averagely group diversity in Gadhi river. Copepods, decapods larvae, gastropods, lamellibranchs were common groups observed as, figures next represents zooplankton standing stock graphically.


Figure 4.3: Graphical representations of Zooplankton Biomass, Population and total group for March 2016

The above graph represents the high biomass reported from station 11; Station 12 shows less population and biomass when compared to station 2 & 11.

4.6.1.3 Benthos

Macro-benthic biomass noted 0.55 gm/m² with population $2.5 \times 10^2/m^2$ and faunal group found were

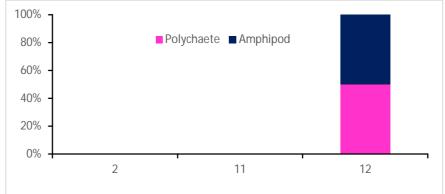

Polychaetes and Amhipods at station 12. No benthic sample was collected at station 2 and 11 because of rocky

Figure 4.4: Benthic organism found in samples

bottom. The benthic organisms observed was good in terms of living system of Benthos.

The benthic organisms found at sampling area shown in **Figure 4.4** and **Figure 4.5** represents the graphical representations of population of benthic organisms' groups in percentage.

Figure 4.5: *Graphical representation of benthic population for March 2016*

The graph represents the Polychaete as major stable benthic component.

4.6.1.4 Microbiology

Coliform microbes were present in surface samples in stations 12 and absent in remaining surface samples. E coli like organisms were absent in all surface and bottom levels. No specific trend was observed.

5. CHAPTER V: CONCLUSION & RECOMMENDATION

Based on the study of activities planned during pre-development works and on the basis of the environmental baseline monitoring results, certain issues have been identified and steps proposed to mitigate the environmental impacts as suggested below:

5.1 Ambient Air Quality

5.1.1 Observations

As can be seen from analysis data, Table 4.1, the particulate levels are under NAAQS limit in terms of PM10 and PM2.5 – particularly the PM2.5 which is mostly from very heavy automobile traffic.

5.1.2 NMIA Pre- Development Activities and impacts anticipated on Air Quality:

- Construction activities at NMIA during pre-development works include:
- demolition of hill which will generate about 10 crore cum of material like murum and rock of which 6 crore cum will be utilized within site and balance will be taken to fill up nearby areas
- Rehabilitation and re-settlement of nearly 3500 households presently staying in 7 villages within NMIA area

The air will get polluted by activities like excavation, land filling, controlled blasting, construction, material handling and transportation during construction phase due to traffic and high dust levels.

5.1.3 Mitigation Measures Proposed:

Following mitigation measures are strongly proposed to ensure minimal impacts on ambient air quality:

- Use of temporary screens of tin or fabric to create barriers against dust
- Provision for water sprinkling at the construction site and along roads for dust suppression
- Wheel wash system on roads leading out of site to ensure that truck tyres do not spew out dust
- Trucks carrying earth, sand or stone should be covered with tarpaulin to avoid spillage. Overloading of such trucks should be strictly avoided
- ➤ Workers working in high dust areas and on earth moving machineries should be provided with face masks/goggles for their protection- such provision should be built into the contract documents
- ➤ High tech equipment should be used for controlled (delayed) blasting with proper blast pattern along with cover on rock surface being excavated which will generate minimal noise as well as dust
- Construction machinery and equipment should be maintained in good working condition with PUC Certification for all transport vehicles used. All vehicles &

construction equipment which do not meet vehicular pollution standards will not be allowed within construction site

5.2 Ambient Noise:

5.2.1 Observations from Data:

Ambient Noise levels are within the limits prescribed under Schedule II of Environmental Protection Act 1986, however both Day and Night Time values are towards the higher side (barely meeting the Noise standards)

5.2.2 NMIA Pre- Development Activities and impacts anticipated on Ambient Noise Levels:

Construction activities at NMIA during pre-development works include:

- demolition of hill which will generate about 10 crore cum of material like murum and rock of which 6 crore cum will be utilized within site and balance will be taken to fill up nearby areas
- Rehabilitation and re-settlement of nearly 3500 households presently staying in 7 villages within NMIA area

The ambient noise levels will get affected by activities like (a) use of Earth moving machinery like Excavators, Wheel Loaders etc and trucks for handling and re-handling of excavated material (b) controlled blasting (c) demolition of houses and existing structures

5.2.3 Mitigation Measures Proposed:

Following mitigation measures are strongly proposed to ensure minimal impacts on ambient noise levels:

- ➤ Use of te11mporary screens of tin to create barriers against noise propagation in active construction areas
- Workers working in high noise areas and on earth moving machineries should be provided with ear muffs/ear plugs for their protection- such provision should be built into the contract documents
- Trucks and construction machinery should be well maintained to ensure low noise generation. Norms of Noise levels for Construction machinery as specified under EP Act should be strictly followed
- ➤ High tech equipment should be used for controlled (delayed) blasting with proper blast pattern along with cover on rock surface being excavated which will generate minimal noise
- > construction activity should not be carried out night time hours
- > construction machineries and DG sets used should be provided with silencers
- > DG sets used should conform to EP Act norms for air pollution and noise

	-	unding villa the project	e informed, so tl

5.3 Soil

5.3.1 Observations from Data:

Soil is fertile and can support vegetation.

5.3.2. NMIA Pre - Development Activities and impacts anticipated on soil:

Construction activities at NMIA during pre-development works include:

- demolition of hill which will generate about 10 crore cum of material like murum and rock of which 6 crore cum will be utilized within site and balance will be taken to fill up nearby areas
- Site level is currently low and will be increased to +6 to +7m above existing GL by using excavated material

The soil will get affected by above activities.

5.3.3 Mitigation measure proposed:

Following mitigation measures are strongly proposed to ensure minimal impacts on soil quality:

- removal of existing top soil within site by excavating and storing the same for future use.
- > Such excavated soil should be stored separately and used as final top layer after landfilling is completed

5.4 Ground Water:

5.4.1 Observations from Data:

Ground Water quality is poor and fails to meet IS 10500:2012 norms at number of locations. The area of the site is low lying and partially inundated during high tide. Ground water occurrence is high and mostly open dug wells are seen in the area.

5.4.2 NMIA Pre- Development Activities and impacts anticipated on Ground Water Quality:

Construction activities at NMIA during pre-development works include:

- demolition of hill which will generate about 10 crore cum of material like murum and rock of which 6 crore cum will be utilized within site and balance will be taken to fill up nearby areas
- Site level is currently low and will be increased to +6 to +7m above existing GL by using excavated material

The ground water quality will get affected by above activities.

5.4.3 Further Study Suggested:

As per clause (vii) under specific conditions of the Environmental clearance granted for the NMIA project by MOEFCC, "systematic and periodic monitoring mechanism need to be put in place by CIDCO to assess the impact on sub surface flow /impact on aquifers as well as surface water bodies in different seasons. Necessary additional environmental protection measures to be adopted to address the impact of proposed development in coastal sub surface flow as well as impact on aquifers"

The above study needs to be undertaken by a Functional Area Expert specializing in Hydrology/Geo- hydrology urgently in view of the fact that pre-development activities have started.

5.4.4 Mitigation Measures for Rehabilitated Settlements:

As can be seen ground water quality is poor and hence CIDCO should make adequate piped water supply available for people to be accommodated in Rehabilitated settlements.

5.5 Marine Water:

5.5.1 Observations from Data:

Marine Water quality is moderate, may be due to hindrances.

5.5.2 NMIA Pre- Development Activities and impacts anticipated on Marine Water Quality:

- Construction activities at NMIA during pre-development works include:
- demolition of hill which will generate about 10 crore cum of material like murum and rock of which 6 crore cum will be utilized within site and balance will be taken to fill up nearby areas
- Site level is currently low and will be increased to +6 to +7m above existing GL by using excavated material
- The area of the site is partially inundated during high tide

The marine water quality will get affected by activities such as land filling, diversion of courses of Ulwe and training of Gadhi rivers.

5.5.3 Further Study Suggested:

The re- coursing of Ulwe river and training of Gadhi river with provision of special channel to the North of the site in the proposed Master plan needs detailed studies so far as its impacts on marine water quality and drainage on the entire area is considered. The Environmental clearance has several clauses pertaining to this as below:

- (v) The proposed re-coursing of tidally influenced water body outlets from Ulwe river has a large cross sectional area at the middle with the river/creek on either end remaining unchanged with its natural course. The whole system should function as was functioning earlier without airport project. Surface runoff should not be let into the channel just because the area of cross section is large. The whole airport area will be reclaimed and the level raised to 7m whereas the existing level all around the airport will continue to be low in its natural state. There will be flow all around due to surface runoff. This additional quantity must be collected by appropriate drainage system and let into Gadhi River and not into the recoursing channel. The recourse channel may be able to take it but not the river or creek on either side of the channel. This aspect shall be examined by CIDCO in details to avoid the flooding of the lowlying areas besides inducting other hydrological and environmental studies.
- (vi) The entire system shall be studied as one composite system with appropriate boundary conditions to reflect the worst conditions - minimum 100 years to be specified and compliance ensured such as -flooding, surface runoff not only from the airport but also from surrounding areas as well, normal flow, tidal flow due to tidal surge having a long return period, possible obstructions to flow, tributaries joining the main river etc so as to take appropriate protection and remedial measures. Due to construction of recourse Channels and also due to tail end of the Gadhi & Ulwe Rivers into Panvel Creek, there is a need to prepare a Comprehensive Master Plan for Surface drainage and Flood protection, keeping in view the proposed developments. CIDCO shall submit the above Master Plan to the Ministry.
- (ix) On the northern part of the airport there is a secondary channel of the Gadhi River which will be filled up for the airport runway construction. This will be replaced by a shorter channel along the northern boundary of the airport. The channel shall be designed appropriately through overall modeling study so that the channel provides tidal water to the mangrove park and moderate tidal flows under worst environmental conditions. Need for widening and deepening of Gadhi River may also be studied simultaneously, if required. The revised widths and depths of recourse channels shall be determined with modified drainage and worst rainfall/tide conditions including appropriate factor of safety.

The above studies needs to be undertaken on priority in view of the fact that predevelopment activities have started.

5.5.4 Mitigation Measures for protection of Marine Water Quality:

Mitigation measures which should be taken up at NMIA during pre-development works:

landfilling should be taken up in areas away from those land parcels which are inundated during high tide

Environmental Compliance Monitoring Report for Navi Mumbai International Airport (NMIA) (Jan – Jun 2016)

- for excavated areas and freshly filled up areas, proper garland drains leading to settlement basins followed by filter bunds should be provided so that rain water does not carryover the loose excavated material into marine areas
- polyelectrolytes should be used to help settle loose suspended material in the settlement basins